Experimental investigation on granular fodder flow characteristics during discharge period in silo

Main Article Content

Kwanchai Kraitong

Abstract

The purpose of this study is to conduct an experimental investigation on granular fodder flow characteristics during discharge period in silos. The pressure on the silo wall and the mass flow rate of pellets feed stored in the silo for 1 hour were determined with the laboratory-scale steel and fiberglass silos. Additionally, the parametric study of four angles of a 55 mm diameter outlet conical hopper such as 10, 20, 30, and 45 degrees were done in this testing. From the results, the average wall pressure of the steel silo in the discharge period was more than that of the fiberglass silo. Both silos presented the minimum and maximum mass flow rate occurring on a hopper angle of 45 degrees and 10 degrees, respectively. When considering experimental results of the wall pressure and the average mass flow rate, it could be concluded that the flow patterns of granular fodder during discharge period in both steel and fiberglass silos were funnel flow patterns.

Article Details

How to Cite
Kraitong, K. (2023). Experimental investigation on granular fodder flow characteristics during discharge period in silo. Naresuan University Engineering Journal, 18(2), 51–56. Retrieved from https://ph01.tci-thaijo.org/index.php/nuej/article/view/253558
Section
Research Paper

References

An, H., Wang, X., Fang, X., Liu, Z., & Liang, C. (2021). Wall normal stress characteristics in an experimental coal silo. Powder Technology, 377, 657-665.

Askegaard, V., & Munch-Andersen, J. (1985). Results from tests with normal and shear stress cells in a medium-scale model silo. Powder Technology, 44(2), 151-157. doi:https://doi.org/10.1016/0032-5910(85)87022-4

Ayuga, F., Guaita, M., Aguado, P. J., & Couto, A. (2001). Discharge and the eccentricity of the hopper influence on the silo wall pressures. Journal of Engineering Mechanics, 127(10), 1067-1074. doi:10.1061/(ASCE)0733-9399(2001)127:10(1067)

Gandia, R., Júnior, E., Carlos Gomes, F., Coimbra de Paula, W., & Dornelas, K. (2021). EXPERIMENTAL PRESSURES EXERTED BY MAIZE IN SLENDER CYLINDRICAL SILO: COMPARISON WITH ISO 11697. Engenharia Agrícola, 41, 576-590. doi:10.1590/1809-4430-eng.agric.v41n6p576-590/2021

Gandia, R. M., Gomes, F. C., Paula, W. C. d., Oliveira Junior, E. A. d., & Aguado Rodriguez, P. J. (2021). Static and dynamic pressure measurements of maize grain in silos under different conditions. Biosystems Engineering, 209,180-199. doi:https://doi.org/10.1016/j.biosystemseng.2021.07.001

Mehos, G., Eggleston, M., Grenier, S., Malanga, C., Shrestha, M., & Trautman, T. (2018). Designing Hoppers, Bins, and Silos for Reliable Flow. Chemical Engineering Progress; New York 114(4), 50-58.

Grudzien, K., & Gonzalez, M. (2013). Detection of tracer particles in tomography images for analysis of gravitational flow in silo. Image Processing & Communications, 18. doi:10.2478/v10248-012-0075-2

Härtl, J., Ooi, J. Y., Rotter, J. M., Wojcik, M., Ding, S., & Enstad, G. G. (2008). The influence of a cone-in-cone insert on flow pattern and wall pressure in a full-scale silo. Chemical Engineering Research and Design, 86(4), 370-378. doi:https://doi.org/10.1016/j.cherd.2007.07.001

Ramírez, A., Nielsen, J., & Ayuga, F. (2010). Pressure measurements in steel silos with eccentric hoppers. Powder Technology, 201(1), 7-20. doi:https://doi.org/10.1016/j.powtec.2010.02.027

Rotter, J. M. (2009). Silo and Hopper Design for Strength.

Tang, J., Lu, H., Guo, X., & Liu, H. (2021). Static wall pressure distribution characteristics in horizontal silos. Powder Technology, 393, 342-348. doi:10.1016/j.powtec.2021.07.084

Uñac, R. O., Vidales, A. M., Benegas, O. A., & Ippolito, I. (2012). Experimental study of discharge rate fluctuations in a silo with different hopper geometries. Powder Technology, 225, 214-220. doi:https://doi.org/10.1016/j.powtec.2012.04.013

Walker, D. M. (1966). An approximate theory for pressures and arching in hoppers. Chemical Engineering Science, 21(11), 975-997. doi:https://doi.org/10.1016/0009-2509(66)85095-9

Wang, X., Liang, C., Guo, X., Chen, Y., Liu, D., Ma, J., . . . An, H. (2020). Experimental study on the dynamic characteristics of wall normal stresses during silo discharge. Powder Technology, 363. doi:10.1016/j.powtec.2020.01.023

Wang, X., Shi, Y., Luo, B., Liang, C., Liu, D., Ma, J., & Chen, X. (2022). Flow profile and wall normal stress characteristics in pattern-transformable flow silos. Chemical Engineering Research and Design, 182, 381-394. doi:https://doi.org/10.1016/j.cherd.2022.04.019

Zhong, Z., Ooi, J. Y., & Rotter, J. M. (2001). The sensitivity of silo flow and wall stresses to filling method. Engineering Structures, 23(7), 756-767. doi:https://doi.org/10.1016/S0141-0296(00)00099-7