Design and Commissioning of Continuously Stirred Anaerobic Bioreactor for Upcycling Carbon Dioxide (CO2) to Methane (CH4) via Methanogenesis

Main Article Content

Kusuma Rintachai
Tanapon Phenrat
Siriwan Wichai
Apinun Limmongkon
Nusara Yinyom

Abstract

Carbon capture and storage (CCS) technology, especially geological storage in depleted oil and gas fields, is essential to achieving the goal of carbon net zero by 2050. Some depleted oil and gas fields contain anaerobic microbes, including methanogens that can transform CO2 and hydrogen (H2) to methane (CH4), which can be extracted and used as a fuel. Thus, subsurface microbiological transformation via methanogens may be key to achieving the large-scale utilization of CO2. While this concept is exciting and has great potential to promote a circular economy with regard to CO2 and simultaneously achieve carbon neutrality, extensive research is needed to understand and to maximize methanogen performance. This research preliminary evaluates biogenic gas potential in a neighboring country. Chemical is evaluated. From chemical point of view, the analysis of δ13CCH4 values of the biogenic gas samples from in a neighboring country reveals that the methanogenic pathway is probably dominated by biogenic carbonate reduction. Here, we reveal a design for an automated bioreactor capable of simulating deep subsurface conditions to culture strictly anaerobic methanogens obtained from a gas field in a neighboring country. To simulate deep subsurface conditions, the bioreactor contains a mixture of sediment and anaerobic microbes at an inner pressure of 8 bar and a temperature of 37°C. It has a controlled CO2 and H2 feeding system with real-time monitoring of pH, oxidation reduction potential, conductivity, and the transformation of CO2 and H2 to CH4. Even without any optimization, methanogens in this reactor can transform H2 and CO2 to CH4 at a conversion rate of 0.87 to 77.46% of theoretical yield, confirming the survival of active methanogens. This novel reactor facilitates the experimental study of anaerobic methanogenesis in deep subsurface conditions, which is very technically challenging and, to the best of our knowledge, has not previously been performed in Thailand

Article Details

How to Cite
Rintachai, K., Phenrat, T., Wichai , S., Limmongkon, A., & Yinyom , N. . (2023). Design and Commissioning of Continuously Stirred Anaerobic Bioreactor for Upcycling Carbon Dioxide (CO2) to Methane (CH4) via Methanogenesis . Naresuan University Engineering Journal, 18(2), 41–50. Retrieved from https://ph01.tci-thaijo.org/index.php/nuej/article/view/252869
Section
Research Paper

References

Agency, U. S. E. P. (2012). Water: Monitoring & Assessment. Retrieved 03/31/2022, 2022, from

https://archive.epa.gov/water/archive/web/html/vms59.html

Authority, M. W. (2014). Conductivity. from https://www.mwa.co.th/ewt_news.php?nid=13321

Bedoić, R., Dorotić, H., Rolph Schneider, D., Čuček, L., Ćosić, B., Pukšec, T., & Duić, N. (2021). Synergy between feedstock gate fee and power-to-gas: An energy and economic analysis of renewable methane production in a biogas plant. Renewable Energy, 173, 12-23. doi:

https://doi.org/10.1016/j.renene.2021.03.124

Bioremediation Protocols. (1997). (D. Sheehan Ed.): Humana Press.

Burkhardt, M., Jordan, I., Heinrich, S., Behrens, J., Ziesche, A., & Busch, G. (2019). Long term and demand-oriented biocatalytic synthesis of highly concentrated methane in a trickle bed reactor. Applied Energy, 240, 818-826. doi:doi:10.1016/j.apenergy.2019.02.076

Czauner, B., Szabó, Z., & Mádl-Szonyi, J. (2023). Basin-Scale Hydraulic Evaluation of Groundwater Flow Controlled Biogenic Gas Migration and Accumulation in the Central Pannonian Basin. MDPI, 15(18). doi: 10.3390/w15183272

Fernández-Prini, R., Aires, B., Alvarez, J. L., Aires, B., & Harvey, A. H. (2003). Henry’s Constants and Vapor–Liquid Distribution Constants for Gaseous Solutes in H2O and D2O at High Temperatures. Physical and Chemical. doi:

https://doi.org/10.1063/1.1564818

Holz, F., Scherwath, T., Granado, P. C. d., Skar, C., Olmos, L., Ploussard, Q., . . . Herbst, A. (2021). A 2050 perspective on the role for carbon capture and storage in the European power system and industry sector. Energy Economics, 104. doi: https://doi.org/10.1016/j.eneco.2021.105631

Hungate, R. E. (1969). Chapter IV A Roll Tube Method for Cultivation of Strict Anaerobes. Methods in Microbiology, 3, 117- 132.

doi:https://doi.org/10.1016/S0580-9517(08)70503-8

Katz, B. J. (2011). Microbial Processes and Natural Gas Accumulations. The Open Geology Journal,, 5, 75-83. doi: 10.2174/1874262901105010075

Kim, S., Choi, K., & Chung, J. (2013). Reduction in carbon dioxide and production of methane by biological reaction in the electronics industry. International Journal of Hydrogen Energy, 38(8), 3488-3496. doi: 10.1016/j.ijhydene.2012.12.007

Koide, H. (1999). GEOLOGICAL SEQUESTRATION AND MICROBIOLOGICAL RECYCLING OF CO2 IN AQUIFERS. Paper presented at the Greenhouse Gas Control Technologies, Proc. 4th Int. Conf. on Greenhouse Gas Control Technologies.

Kong, D., Zhang, K., Junfeng Liang, Wenxuan Gao, & author, L. D. (2019 ). Methanogenic community during the anaerobic digestion of different substrates and organic loading rates. Microbiologyopen, 8(5). doi: 10.1002/mbo3.709

Magnetic Drives for High Pressure Reactor. Retrieved 03/31/2022, 2022, from

https://amarequip.com/magnetic-drives-for-high-pressure-reactor

Mauerhofer, L.-M., Pappenreiter, P., Paulik, C., Seifert, A. H., ernacchi, S., & Rittmann, S. K.-M. R. (2019). Methods for quantification of growth and productivity in anaerobic microbiology and biotechnology. Folia Microbiologica, 321–360. https://doi.org/10.1007/s12223-018-0658-4

Muhammed, N. S., Haq, B., Shehri, D. A., Al-Ahmed, A., Rahman, M. M., & Zaman, E. (2022). A review on underground hydrogen storage: Insight into geological sites, influencing factors and future outlook. Energy Reports, 8, 461-499. doi: https://doi.org/10.1016/j.egyr.2021.12.002

Ni, Y., Dai, J., Zou, C., Liao, F., Shuai, Y., & Zhang, Y. (2013). Geochemical characteristics of biogenic gases in China. International Journal of Coal Geology, 113, 76-87. doi:10.1016/j.coal.2012.07.003

Patterson, T., Savvas, S., Chong, A., Law, I., Dinsdale, R., & Esteves, S. (2017). Integration of Power to Methane in a waste water treatment plant – A feasibility study. Bioresour Technol, 245, 1049-1057. doi: https://doi.org/10.1016/j.biortech.2017.09.048

Rehman, A., Ma, H., Ahmad, M., Irfan, M., Traore, O., & Chandio, A. A. (2021). Towards environmental Sustainability: Devolving the influence of carbon dioxide emission to population growth, climate change, Forestry, livestock and crops production in Pakistan. Ecological Indicators, 125. doi: https://doi.org/10.1016/j.ecolind.2021.107460

Rice, D. D., & Claypool, G. E. (1981). Generation, Accumulation, and Resource Potential of Biogenic Gas1. AAPG Bulletin, 65(1), 5–25. doi: https://doi.org/10.1306/2F919765-16CE-11D7-8645000102C1865D

Ruan, D., Zhou, Z., Pang, H., Yao, J., Chen, G., & Qiu, Z. (2019). Enhancing methane production of anaerobic sludge digestion by microaeration: Enzyme activity stimulation, semi-continuous reactor validation and microbial community analysis. Bioresour Technol, 289, 121643.

doi: 10.1016/j.biortech.2019.121643

Sander, R. (2015). Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmospheric Chemistry and Physics, 15(8). doi: https://doi.org/10.5194/acp-15-4399-2015, 2015.

Sander, S. P., Abbatt, J., Barker, J. R., Burkholder, J. B., Friedl, R. R., Golden, D. M., Wine, P. H. (2011). Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17.

Schiraldi, C., & Rosa, M. D. (2014). Encyclopedia of Membranes (E. Drioli & L. Giorno Eds.): Springer, Berlin, Heidelberg.

Seifert, A. H., Rittmann, S., & Herwig, C. (2014). Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis. Applied Energy, 132, 155–162.

doi:http://dx.doi.org/10.1016/j.apenergy.2014.07.002

Show, K.-Y., Lee, D.-J., & Chang, J.-S. (2011). Bioreactor and process design for biohydrogen production. Bioresour Technol, 102, 8524–8533. doi: 10.1016/j.biortech.2011.04.055

Singh, J., Kaushik, N., & Biswas, S. (2014). Bioreactors – Technology & Design Analysis. THE SCITECH, 01(06).

Susilawati, R., Papendick, S. L., Gilcrease, P. C., Esterle, J. S., Golding, S. D., & Mares, T. E. (2013). Preliminary investigation of biogenic gas production in Indonesian low rank coals and implications for a renewable energy source. Asian Earth Sciences. doi: 10.1016/j.jseaes.2013.08.024

Technologies, A. (2022). HP-PLOT Q Columns. Retrieved 03/31/2022, 2022, from https://www.agilent.com/en/product/gc-columns/plot-gc-columns/hp-plot-q-columns

Technology, S. S. (2021). Mettler Toledo – Redox sensor. Retrieved 03/31/2022, 2022, from https://www.sea-sun-tech.com/product/mettler-redox/Wellinger, A.,

Murphy, J., & Baxter, D. (2013). The biogas handbook Science, production and applications: Woodhead Publishing.

Wolfgang, D., Lauckner, J., Liu, Z., Svensson, U., & Buhmann, D. (1996). The kinetics of the reaction CO2 + H20 + H+ + HCO3-, as one of the rate limiting steps for the dissolution of calcite in the system H2O-CO2-CaC03. Geochimica et Cosmochimica Acta, 60. doi: 10.1016/0016-7037(96)00181-0

Zehnder, A. J. B. (1988). Biology of Anaerobic Microorganisms (Wiley Series in Ecological and Applied Microbiology) 99th Edition (A. J. B. Zehnder Ed.): Wiley-Interscience; 99th edition (September 7, 1988).

Zhou, Y., & Wang, C. (2003). Analysis of Permanent Gases and Methane with the Agilent 6820 Gas Cromatograph.

Zinder, S. H. (1993). Physiological Ecology of Methanogens.