Modeling Molecular Structural Properties of Magnetite (Fe3O4) and Mackinawite (FeS) Using Density Functional Theory (DFT)

Main Article Content

Saranya Tongkamnoi
Mayuree Phonyiem Reilly
Tanapon Phenrat

Abstract

Bare and sulfidized nanoscale zerovalent iron (bare NZVI or Fe0 and S-NZVI, respectively) has been widely utilized for environmental restoration. During the degradation and sequestration of contaminants of concern (COCs) such as chlorinated organics and toxic metals, interfacial detoxification reactions are governed by the physical chemistry of the iron oxide shell of bare NZVI and the iron sulfide shell of S-NZVI: magnetite (Fe3O4) and mackinawite (FeS), respectively. Because interfacial reactions generally cannot be directly and experimentally monitored, this study examines first-principles methods based on the use of the density functional theory (DFT) as a simulation tool to help understand interfacial phenomena. In this study, DFT approaches with and without long-range van der Waals interactions (so-called DFT and DFT-D2 approaches, respectively) were employed. The simulated unit cell parameters and electronic density of states (DOS) of bulk Fe3O4 and FeS were modeled using both DFT and   DFT-D2 methods and compared with previous experimental results where these were available. We reveal that there was strong agreement between the simulated properties and previous experimental results. Nevertheless, for both  Fe3O4 and  FeS, the DFT-D2 method performed better than the DFT method in terms of the accuracy of simulated unit cell parameters. Furthermore, the DFT-D2 method simulated the DOS of both materials effectively. The DOS of Fe3O4 supports electron transfer from the central octahedral-Felayer to the outer tetrahedral-FeA layer, while the DOS of FeS potentially explains the decrease of the NZVI aging effect and enhanced treatment for hydrophobic contaminants due to sulfidation reported in literature. This research projects that DFT-D2 can be used as a tool of choice for understanding the interaction between COCs and Fe3O4 and FeS surfaces at nanoscale in order to develop the environmental applications of nanomaterials. For this purpose, further modification of the model is required to properly downscale the computation from bulk to nanoscale materials

Article Details

How to Cite
Tongkamnoi, S., Phonyiem Reilly, M. ., & Phenrat, T. (2023). Modeling Molecular Structural Properties of Magnetite (Fe3O4) and Mackinawite (FeS) Using Density Functional Theory (DFT). Naresuan University Engineering Journal, 18(2), 32–40. Retrieved from https://ph01.tci-thaijo.org/index.php/nuej/article/view/252865
Section
Research Paper
Author Biographies

Saranya Tongkamnoi, Research Unit for Integrated Natural Resources Remediation and Reclamation (IN3R), Department of Civil Engineering, Faculty of Engineering, Naresuan University, Phitsanulok, Thailand, 65000

(oral presentation)

Challenges in Environmental Science and Engineering (CESE2020)

“Understanding surface structure properties and chemisorption of trichloroethylene (TCE) on sulfide-modified nanoscale zerovalent iron (S-NZVI) surfaces using density functional theory ”

Mayuree Phonyiem Reilly, College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang, Rd., Ladkrabang, Bangkok, Thailand, 10520

Material simulations for alternative energy and sensor applications, computational chemistry, ab initio and DFT calculation, reaction mechanisms on surfaces, structural, electronic structure, energetic, spectroscopic and dynamic properties of materials.

Tanapon Phenrat, Research Unit for Integrated Natural Resources Remediation and Reclamation (IN3R), Department of Civil Engineering, Faculty of Engineering, Naresuan University, Phitsanulok, Thailand, 65000 / Center of Excellence for Sustainability of Health, Environment, and Industry (SHEI), Faculty of Engineering, Naresuan University, Phitsanulok, Thailand, 65000

Groundwater and soil remediation, nanomaterials for environmental restoration, groundwater modeling, site characterization, risk assessment.

References

Barbieri, A., Weiss, W., Van Hove, M., & Somorjai, G. (1994). Magnetite Fe3O4 (111): surface structure by LEED crystallography and energetics. Surface Science, 302(3), 259-279. https://doi.org/10.1016/0039-6028(94)90832-X

Berner, R. A. (1962). Tetragonal iron sulfide. Science,137(3531), 669-669. https://doi.org/10.1126/science.137.3531.669.b

Blochl, P. E. (1994). Projector augmented-wave method. Phys Rev B Condens Matter, 50(24), 17953-17979. https://doi.org/10.1103/physrevb.50.17953

Cornell, R. M., & Schwertmann, U. (2003). The iron oxides: structure, properties, reactions, occurrences, and uses (Vol. 664). Wiley-vch

Weinheim. https://doi.org/10.1515/CORRREV.1997.15.3-4.533

Dahl, J., & Avery, J. (1986). Local densityapproximations in quantum chemistry and solid state physics.

De la Pierre, M., Orlando, R., Maschio, L., Doll, K., Ugliengo, P., & Dovesi, R. (2011). Performance of six functionals (LDA, PBE, PBESOL, B3LYP, PBE0, and WC1LYP) in the simulation of vibrational and dielectric properties of crystalline compounds. The case of forsterite Mg2SiO4. J Comput Chem, 32(9), 1775-1784. https://doi.org/10.1002/jcc.21750

Devey, A., Grau-Crespo, R., & De Leeuw, N. (2008). Combined density functional theory and interatomic potential study of the bulk and surface structures and properties of the iron sulfide mackinawite (FeS). The Journal of Physical Chemistry C, 112(29), 10960-10967. https://doi.org/10.1021/jp8001959

Dzade, N., Roldan, A., & de Leeuw, N. H. (2014). The surface chemistry of NOx on mackinawite (FeS) surfaces: a DFT-D2 study. Physical Chemistry Chemical Physics, 16(29), 15444-15456. https://doi.org/10.1039/C4CP01138D

Dzade, N. Y., Roldan, A., & De Leeuw, N. H. (2013). Adsorption of methylamine on mackinawite (FeS) surfaces: A density functional theory study. The Journal of Chemical Physics, 139(12),124708. https://doi.org/10.1063/1.4822040

Fan, D., O’Brien Johnson, G., Tratnyek, P. G., & Johnson, R. L. (2016). Sulfidation of nano zerovalent iron (nZVI) for improved selectivity during in-situ chemical reduction (ISCR). Environmental Science & Technology, 50(17), 9558-9565. https://doi.org/10.1021/acs.est.6b02170

Grimme, S. (2006). Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem, 27(15), 1787-1799. https://doi.org/10.1002/jcc.20495

Jeong, H. Y., Lee, J. H., & Hayes, K. F. (2008). Characterization of synthetic nanocrystalline mackinawite: crystal structure, particle size, and specific surface area. Geochimica et cosmochimica acta, 72(2), 493-505. https://doi.org/10.1016/j.gca.2007.11.008

Kim-Ngan, N.-T., Soszka, W., & Kozłowski, A. (2004). Studies of an Fe3O4 (111) surface by low-energy ion scattering. Journal of magnetism and magnetic materials, 279(1), 125-133.https://doi.org/10.1016/j.jmmm.2004.01.092

Kresse, G., & Furthmüller, J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6(1), 15-50. https://doi.org/10.1016/0927-0256(96)00008-0

Kresse, G., & Hafner, J. (1993). Ab initio molecular dynamics for liquid metals. Phys Rev B Condens Matter, 47(1), 558-561.

https://doi.org/10.1103/physrevb.47.558

Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. https://doi.org/10.1103/physrevb.59.1758

Labanowski, J. K., & Andzelm, J. W. (2012). Density functional methods in chemistry. Springer Science & Business Media. https://doi.org/10.1007/978-1-4757-0818-9_5

Lennie, A., Redfern, S. A., Schofield, P., & Vaughan, D. (1995). Synthesis and Rietveld crystal structure refinement of mackinawite, tetragonal FeS. Mineralogical Magazine, 59(397), 677-683.

Lennie, A. R., Redfern, S. A., Champness, P. E., Stoddart, C. P., Schofield, P. F., & Vaughan, D. J. (1997). Transformation of mackinawite to greigite; an in situ X-ray powder diffraction and transmission electron microscope study. American Mineralogist, 82(3-4), 302-309.

https://doi.org/10.2138/am-1997-3-408

Liu, Y., Majetich, S. A., Tilton, R. D., Sholl, D. S., & Lowry, G. V. (2005). TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology, 39(5), 1338-1345. https://doi.org/10.1021/es049195r

Liu, Y., Phenrat, T., & Lowry, G. V. (2007). Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environmental Science & Technology, 41(22), 7881-7887.

https://doi.org/10.1021/es0711967

Mackenzie, K., & Georgi, A. (2019). NZVI synthesis and characterization. Nanoscale Zerovalent Iron Particles for Environmental Restoration: From Fundamental Science to Field Scale Engineering Applications, 45-95. https://doi.org/10.1007/978-3-319-95340-3_2

Marand, Z. R., Farimani, M. H. R., & Shahtahmasebi, N. (2014). Study of magnetic and structural and optical properties of Zn doped Fe3O4 nanoparticles synthesized by co-precipitation method for biomedical application. Akush. Ginekol.(Sofiia), 15, 238-247.

https://doi.org/10.7508/NMJ.2015.04.004

Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. https://doi.org/10.1103/physrevb.13.5188

Néel, L. (1984). Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Physical Chemical & Earth Sciences(31), 18.

Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. https://doi.org/10.1103/physrevlett.77.3865

Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Pederson, M. R., Singh, D. J., & Fiolhais, C. (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys Rev B Condens Matter, 46(11), 6671-6687. https://doi.org/10.1103/physrevb.46.6671

Phenrat, T., & Lowry, G. V. (2019). Nanoscale zerovalent iron particles for environmental restoration. From Fundamental Science to Field Scale Engineering Applications. https://doi.org/10.1007/978-3-319-95340-3

Phenrat, T., Schoenfelder, D., Kirschling, T. L., Tilton, R. D., & Lowry, G. V. (2018). Adsorbed poly (aspartate) coating limits the adverse effects of dissolved groundwater solutes on Fe0 nanoparticle reactivity with trichloroethylene. Environmental Science and Pollution Research, 25, 7157-7169. https://doi.org/10.1007/s11356-015-5092-4

Phenrat, T., Thongboot, T., & Lowry, G. V. (2016). Electromagnetic induction of zerovalent iron (ZVI) powder and nanoscale zerovalent iron (NZVI) particles enhances dechlorination of trichloroethylene in contaminated groundwater and soil: proof of concept. Environmental Science & Technology, 50(2), 872-880. https://doi.org/10.1021/acs.est.5b04485

Politzer, P., Seminario, J. M., Concha, M. C., & Murray, J. S. (1993). Some applications of local density functional theory to the calculation of reaction energetics. Theoretica Chimica Acta, 85(1-3), 127-136. https://doi.org/10.1007/bf01374583

Reinsch, B. C., Forsberg, B., Penn, R. L., Kim, C. S., & Lowry, G. V. (2010). Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents. Environmental Science & Technology, 44(9), 3455-3461.

https://doi.org/10.1021/es902924h

Santos-Carballal, D., Roldan, A., Dzade, N. Y., & de Leeuw, N. H. (2018). Reactivity of CO2 on the surfaces of magnetite (Fe3O4), greigite (Fe3S4) and mackinawite (FeS). Philos Trans A Math Phys Eng Sci, 376(2110). https://doi.org/10.1098/rsta.2017.0065

Santos-Carballal, D., Roldan, A., Grau-Crespo, R., & de Leeuw, N. H. (2014). A DFT study of the structures, stabilities and redox behaviour of the major surfaces of magnetite Fe3O4. Phys Chem Chem Phys, 16(39), 21082-21097. https://doi.org/10.1039/c4cp00529e

Su, Y., Lowry, G. V., Jassby, D., & Zhang, Y. (2019). Sulfide-modified NZVI (S-NZVI): synthesis, characterization, and reactivity. Nanoscale Zerovalent Iron Particles for Environmental Restoration: From Fundamental Science to Field Scale Engineering Applications, 359-386.

https://doi.org/10.1007/978-3-319-95340-3_9

Subedi, A., Zhang, L., Singh, D. J., & Du, M.-H. (2008). Density functional study of FeS, FeSe, and FeTe: Electronic structure, magnetism, phonons, and superconductivity. Physical Review B, 78(13), 134514. https://doi.org/10.1103/PhysRevB.78.134514

Sun, R., & Ceder, G. (2011). Feasibility of band gap engineering of pyrite FeS 2. Physical Review B, 84(24), 245211.

Vanderbilt, D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B Condens Matter, 41(11), 7892-7895. https://doi.org/10.1103/physrevb.41.7892

Vaughan, D., & Ridout, M. (1971). Mössbauer studies of some sulphide minerals. Journal of Inorganic and Nuclear Chemistry, 33(3), 741-746. https://doi.org/10.1016/0022-1902(71)80472-4

Weiss, W., & Ranke, W. (2002). Surface chemistry and catalysis on well-defined epitaxial iron-oxide layers. Progress in Surface Science, 70(1-3), 1-151. https://doi.org/10.1016/s0079-6816(01)00056-9

Wimmer, E. (1996). Computational materials design and processing: perspectives for atomistic approaches. Materials Science and Engineering: B, 37(1-3), 72-82. https://doi.org/10.1016/0921-5107(95)01459-4

Xu, J., Li, H., & Lowry, G. V. (2021). Sulfidized nanoscale zero-valent iron: tuning the properties of this complex material for efficient groundwater remediation. Accounts of Materials Research, 2(6), 420-431. https://doi.org/10.1021/accountsmr.1c00037

Yang, T., Wen, X.-d., Ren, J., Li, Y.-w., Wang, J.-g., & Huo, C.-f. (2010). Surface structures of Fe3O4 (111), (110), and (001): A density functional theory study. Journal of Fuel Chemistry and Technology, 38(1), 121-128. https://doi.org/10.1016/s1872-5813(10)60024-2

Zhang, Z., & Satpathy, S. (1991). Electron states, magnetism, and the Verwey transition in magnetite. Physical Review B, 44(24), 13319.

https://doi.org/10.1103/PhysRevB.44.13319