Characterization of Native and Oxidized Cassava Starch Prepared Using a Solution Plasma Process

Main Article Content

Nattha Klanarong
Samorn Hirunpraditkoon
Nagahiro Saito
Isarawut Prasertsung

Abstract

In this work, a solution plasma process (SPP) was used to treat cassava starch suspensions in order to prepare oxidized cassava starch. The plasma treatment time and pulsed frequency were varied from 0 to 300 min and from 15 to 30 kHz, respectively. Oxidation levels were determined by carbonyl and carboxyl content which formed on the cassava starch granules after oxidation with SPP. The amylose content of untreated and plasma treated cassava starch was then determined. FT-IR was employed to analyze the chemical structural change of cassava starch plasma treated samples. Oxidation levels tended to increase as time and pulsed frequency of plasma treatment increased. The amylose contents decreased due to depolymerization of the cassava starch by oxidation with SPP. FT-IR spectra exhibited important peaks occurring on plasma treated cassava starch from 1737-1742 cm-1, which were identified as carbonyl and carboxyl groups formed during the oxidation process.

Article Details

How to Cite
Klanarong, N., Hirunpraditkoon, S. ., Saito, N. ., & Prasertsung, I. . (2020). Characterization of Native and Oxidized Cassava Starch Prepared Using a Solution Plasma Process. Naresuan University Engineering Journal, 15(1), 81–87. Retrieved from https://ph01.tci-thaijo.org/index.php/nuej/article/view/239914
Section
Research Paper

References

Ashogbon, A. O. (2018). Current Research Addressing Physical Modification of Starch from Various Botanical Sources. Global Nutrition and Dietetics, 1(1), 1-7.

Baroch, P., Anita, V., Saito, N., & Takai, O. (2008). Bipolar pulsed electrical discharge for decomposition of organic compounds in water. Journal of Electrostatics, 66(5-6), 294-299.

Biduski, B., Silva, F. T., Silva, W. M., El Halal, S. L. D. M., Pinto, V. Z., Dias, A. R. G., & Rosa Zavareze, E. (2017). Impact of acid and oxidative modifications, single or dual, of sorghum starch on biodegradable films. Food Chemistry, 214, 53-60.

Bower, D. I., & Maddams, W. F. (1992). The vibrational pectroscopy of polymers. Cambridge University Press.

Breuninger, W. F., Piyachomkwan, K., & Sriroth, K. (2009). Tapioca/cassava starch: production and use. Academic Press.

Castanha, N., Matta Junior, M. D., & Augusto, P. E. D. (2017). Potato starch modification using the ozone technology. Food Hydrocolloids, 66, 343-356.

Chávez-Murillo, C. E., Wang, Y. J., & Bello-Pérez, L. A. (2008). Morphological, physicochemical and structural characteristics of oxidized barley and corn starches. Starch-Stärke, 60(11), 634-645.

Colivet, J., & Carvalho, R. A. (2017). Hydrophilicity and physicochemical properties of chemically modified cassava starch films. Industrial Crops and Products, 95, 599-607.

Dias, A. R. G., Rosa Zavareze, E., Helbig, E., Moura, F. A., Vargas, C. G., & Ciacco, C. F. (2011). Oxidation of fermented cassava starch using hydrogen peroxide. Carbohydrate Polymers, 86(1), 185-191.

Fonseca, L. M., Gonçalves, J. R., El Halal, S. L. M., Pinto, V. Z., Dias, A. R. G., Jacques, A. C., & Rosa Zavareze, E. (2015). Oxidation of potato starch with different sodium hypochlorite concentrations and its effect on biodegradable films. LWT-Food Science and Technology, 60(2), 714-720.

Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1-25.

Halliwell, B. (1999). Establishing the significance and optimal intake of dietary antioxidants: the biomarker concept. Nutrition Reviews, 57(4), 104-113.

Hoover, R. (2000). Acid-treated starches. Food Reviews International, 16(3), 369-392.

Jayakody, L., & Hoover, R. (2008). Effect of annealing on the molecular structure and physicochemical properties of starches from different botanical origins-A review. Carbohydrate Polymers, 74(3), 691-703.

Kaasova, J., Hubackova, B., Kadlec, P., Prihoda, J., & Bubnik, Z. (2002). Chemical and biochemical changes during microwave treatment of wheat. Czech Journal of Food Sciences, 20(2), 74-78.

Kaur, B., Ariffin, F., Bhat, R., & Karim, A. A. (2012). Progress in starch modification in the last decade. Food Hydrocolloids, 26(2), 398-404.

Klein, B., Vanier, N. L., Moomand, K., Pinto, V. Z., Colussi, R., Rosa Zavareze, E., & Dias, A. R. G. (2014). Ozone oxidation of cassava starch in aqueous solution at different pH. Food Chemistry, 155, 167-173.

Kuakpetoon, D., & Wang, Y. J. (2001). Characterization of different starches oxidized by hypochlorite. Starch-Stärke, 53(5), 211-218.

Malik, M. A., Ghaffar, A., & Malik, S. A. (2001). Water purification by electrical discharges. Plasma Sources Science and Technology, 10(1), 82-91.

McGrance, S. J., Cornell, H. J., & Rix, C. J. (1998). A simple and rapid colorimetric method for the determination of amylose in starch products. Starch-Stärke, 50(4), 158-163.

Mina, J., Valadez-Gonzalez, A., Herrera-Franco, P., Zuluaga, F., & Delvasto, S. (2011). Physicochemical characterization of natural and acetylated thermoplastic cassava starch. Medellin, 78(166), 174-182.

Pauli, R. B., Quast, L. B., Demiate, I. M., & Sakanaka, L. S. (2011). Production and characterization of oxidized cassava starch (Manihot esculenta Crantz) biodegradable films. Starch-Stärke, 63(10), 595-603.

Prachayawarakorn, J., & Tamseekhram, J. (2019). Chemical modification of biodegradable cassava starch films by natural mono-, di-and tri-carboxylic acids. Songklanakarin Journal of Science & Technology, 41(2), 355-362.

Prasertsung, I., Aroonraj, K., Kamwilaisak, K., Saito, N., & Damrongsakkul, S. (2019). Production of reducing sugar from cassava starch waste (CSW) using solution plasma process (SPP). Carbohydrate Polymers, 205, 472-479.

Prasertsung, I., Chutinate, P., Watthanaphanit, A., Saito, N., & Damrongsakkul, S. (2017). Conversion of cellulose into reducing sugar by solution plasma process (SPP). Carbohydrate Polymers, 172, 230-236.

Rosa Zavareze, E., Pinto, V. Z., Klein, B., El Halal, S. L. M., Elias, M. C., Prentice-Hernández, C., & Dias, A. R. G. (2012). Development of oxidised and heat-moisture treated potato starch film. Food Chemistry, 132(1), 344-350.

Singh, A., Geveke, D. J., & Yadav, M. P. (2017). Improvement of rheological, thermal and functional properties of tapioca starch by using gum arabic. Lebensmittel-Wissenschaft & Technologie, 80, 155-162.

Tadini, C. C. (2017). Bio-based materials from traditional and nonconventional native and modified starches. Academic Press.

Takai, O. (2008). Solution plasma processing (SPP). Pure and Applied Chemistry, 80(9), 2003-2011.

Tantiplapol, T., Singsawat, Y., Narongsil, N., Damrongsakkul, S., Saito, N., & Prasertsung, I. (2015). Influences of solution plasma conditions on degradation rate and properties of chitosan. Innovative Food Science & Emerging Technologies, 32, 116-120.

Thunwall, M., Kuthanova, V., Boldizar, A., & Rigdahl, M. (2008). Film blowing of thermoplastic starch. Carbohydrate Polymers, 71(4), 583-590.

Tomasik, P., & Zaranyika, M. F. (1995). Nonconventional methods of modification of starch. Advances in Carbohydrate Chemistry and Biochemistry, 51, 243-318.

Vanier, N. L., El Halal, S. L. M., Dias, A. R. G., & Rosa Zavareze, E. (2017). Molecular structure, functionality and applications of oxidized starches: A review. Food Chemistry, 221, 1546-1559.

Zamudio-Flores, P. B., Vargas-Torres, A., PérezGonzález, J., Bosquez-Molina, E., & Bello-Pérez, L. A. (2006). Films prepared with oxidized banana starch: mechanical and barrier properties. Starch-Stärke, 58(6), 274-282.