Modeling Hydrological Impacts of Land- Use Change in the Sam Ngao Watershed Using SWAT and CA-Markov
Main Article Content
Abstract
This study investigates the hydrological consequences of Land Use and Land Cover (LULC) transformations within the Sam Ngao Watershed (SNgW) from 2000 to 2020. Utilizing the Soil and Water Assessment Tool (SWAT), the research simulates watershed hydrological responses to observed LULC dynamics. To forecast future hydrological conditions, LULC scenarios for 2040 and 2060 were generated using a hybrid Cellular Automata-Markov Chain (CA-Markov) modeling approach. A hybrid classification methodology enhanced the accuracy of LULC mapping from Landsat imagery, integrating multiple classification techniques. Results reveal that LULC alterations between 2000 and 2020 significantly influenced the watershed’s hydrological regime, including declines in dry season flow (7.36%), groundwater discharge (25.43%), and evapotranspiration rates (7.63%), and increases in average annual streamflow (9.85%), wet season streamflow (12.85%), and surface runoff (33.21%). These shifts are primarily attributed to agricultural expansion and deforestation. Projected LULC changes for 2040–2060 indicate a potential reversal in trends, with increases in dry season flow, groundwater recharge, and evapotranspiration, accompanied by decreases in annual and wet season streamflow as well as surface runoff. Hydrological impacts were notably heterogeneous across sub-watersheds, reflecting the spatially uneven distribution of LULC changes. These findings offer valuable insights for decision-makers, water resource managers, and local stakeholders toward creating adaptive strategies for sustainable water resource management in the SNgW and analogous catchments. The study supports international efforts aligned with Sustainable Development Goal 6 (SDG 6) to secure universal access to clean water and sanitation through sustainable management, and with SDG 11 to create sustainable cities and communities through resilient infrastructure, inclusive urban planning, and climate-adaptive water management systems. The outcomes also provide a robust scientific foundation for researchers and policy developers engaged in hydrology, watershed management, and national land use planning frameworks.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Abuhay, W., Gashaw, T., & Tsegaye, L. (2023). Assessing impacts of land use and land cover changes on the hydrology of Upper Gilgel Abbay watershed using the SWAT model. Journal of Agriculture and Food Research, 12, Article 100535. https://doi.org/10.1016/j.jafr.2023.100535
Aragaw, H. M., Goel, M. K., & Mishra, S. K. (2021). Hydrological responses to human-induced land use and land cover changes in the Gidabo River watershed, Ethiopia. Hydrological Sciences Journal, 66(4), 640–655. https://doi.org/10.1080/02626667.2021.1890328
Aragaw, H. M., Mishra, S. K., & Goel, M. K. (2022). Responses of water balance component to land use and land cover and climate change using geospatial and hydrologic modeling in the Gidabo watershed, Ethiopia. Geocarto International, 37(27), 17119–17144. https://doi.org/10.1080/10106049.2022.2123956
Aredo, M. R., Hatiye, S. D., & Pingale, S. M. (2021). Modeling the rainfall-runoff using MIKE 11 NAM model in Shaya catchment. Modeling Earth Systems and Environment, 7(4), 2545–2551. https://doi.org/10.1007/s40808-020-01054-8
Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B., & Neitsch, S. L. (2012). Soil & water assessment tool input/output documentation version 2012. Texas Water Resources Institute.
Asadi, S., Sáez, P. J., Ballesteros, A. L., & Aparicio, J. S. (2025). Coupling SWAT+ with LSTM for enhanced and interpretable streamflow estimation in arid and semi-arid watersheds, a case study of the Tagus Headwaters River basin, Spain. Environmental Modelling and Software, 186, Article 106360. https://doi.org/10.1016/j.envsoft.2025.106360
Bagwan, W. A., & Gavali, R. S. (2025). Application of analytic hierarchy process for the assessment of soil erosion risk in the Urmodi River watershed of Maharashtra state, India. Results in Engineering, 26, Article 104606. https://doi.org/10.1016/j.rineng.2025.104606
Bawa, A., Mendoza, K., Srinivasan, R., Donchha, F. O., Smith, D., Wolfe, K., Parmar, R., Johnston, J. M., & Corona, J. (2025). Enhancing hydrological modeling of ungauged watersheds through machine learning and physical similarity-based regionalization of calibration parameters. Environmental Modelling and Software, 186, Article 106335. https://doi.org/10.1016/j.envsoft.2025.106335
Belhaj, F., Rachid, H., Abdessalam, O., Tariq, A., Belkendil, B., Mohamed, B., Alzahrani, H., Mustafa, H., & Askary, H. M. E. (2025). Predicting precipitation and NDVI utilization of the multi-level linear mixed-effects model and the CA-Markov simulation model. Climate Services, 38, Article 100554. https://doi.org/10.1016/j.cliser.2025.100554
Chakir, H., Chaaouan, J., & Eddine, B. C. (2025). Spatial-temporal assessment of soil erosion using the RUSLE model in the upstream Inaouene watershed, Northern Morocco. Natural Hazards Research, 5(1), 148–156. https://doi.org/10.1016/j.nhres.2024.08.002
Chang, T., Wu, C., Lin, P., & Gao, X. (2024). Sudden change of fish functional compositions during a drought in the wet season of the middle Yangtze River, China. Global Ecology and Conservation, 54, Article e03144. https://doi.org/10.1016/j.gecco.2024.e03144
Chen, H., Luo, L., Ren, J., Lui, X., Wang, C., Ren, Q., & Wang, Y. (2025). Legacy nitrogen impeding the achievement of nitrogen management targets: Evidence from China’s first cross-provincial ecological compensation watershed. Environmental Technology & Innovation, 38(4), Article 104178. http://dx.doi.org/10.1016/j.eti.2025.104178
Chung, T. C., Lee, L. C., Song, C. E., Chiang, J. M., Liao, C. S., Liou, Y. S., Wang, S. F., & Huang, J. C. (2024). Divergent effect of landscape patterns on stream water chemistry and seasonal variations across mountainous watersheds in a Northwest Pacific island. Ecological Indicators, 158, Article 111581. https://doi.org/10.1016/j.ecolind.2024.111581
Dibaba, W. T., Demissie, T. A., & Miegel, K. (2020). Watershed hydrological response to combined land use and land cover and climate change in highland Ethiopia: Finchaa catchment. Water, 12(6), Article 1801. https://doi.org/10.3390/w12061801
Doza, M. B, Yang, W., Liu, Y., Yerubandi, R., Daggupati, P., DeVries, B., & Fraser, E. D. G. (2025). Evaluating best management practices for nutrient load reductions in tile-drained watersheds of the Laurentian Great Lakes basin: A literature review. Science of the Total Environment, 965, Article 178657. https://doi.org/10.1016/j.scitotenv.2024.178657
Faksomboon, B. (2022). Development of a hydrodynamic model for regulating water drainage of reservoir and water resources management, Lamtakong watershed of Thailand. Nakhara: Journal of Environmental Design and Planning, 21(3), Article 217. https://doi.org/10.54028/NJ202221217
Faksomboon, B. (2023). Predicting spatial land use and land cover change using an integrated mathematical model in the Khlong Nam Lai watershed, Kamphaeng Phet province, Thailand. EnvironmentAsia, 16(1), 16–27. https://doi.org/10.14456/ea.2023.2
Faksomboon, B., & Polthana, S. (2023). Performance evaluation and comparison of SWAT model-predicted potential trends in Sub-Ping watershed, Thailand. EnvironmentAsia, 16(2), 35–47. https://doi.org/10.14456/ea.2023.19
Faksomboon, B., Chaivino, N., & Phadpin, A. (2023). Identification of soil erosion using the SWAT model for prioritizing conservation measures of Si Satchanalai Sub-watershed in Thailand. EnvironmentAsia, 16(3), 117–132. https://doi.org/10.14456/ea.2023.40
Faksomboon, B., Lertkaeo, P., & Phunlao, B. (2024). Groundwater recharge and surface runoff modeling response to land use and land cover dynamics in a Mae Wong watershed of Thailand. Applied Environmental Research, 46(1), Article 005. https://doi.org/10.35762/AER.2024005
Gashaw, T., Tulu, T., Argaw, M., & Worqlul, A. W. (2017). Evaluation and prediction of land use and land cover changes in the Andassa wateed, Blue Nile watershed, Ethiopia. Environmental Systems Research, 6(17), 1–15. https://doi.org/10.1186/s40068-017-0094-5
Gashaw, T., Tulu, T., Argaw, M., & Worqlul, A. W. (2018). Modeling the hydrological impacts of land use and land cover changes in the Andassa watershed, Blue Nile watershed, Ethiopia. Science of the Total Environment, 619–620, 1394–1408. https://doi.org/10.1016/j.scitotenv.2017.11.191
Gebremicael, T. G., Mohamed, Y. A., Van Zaag, P., & Hagos, E. Y. (2018). Quantifying longitudinal land use change from land degradation to rehabilitation in the headwaters of Tekeze-Atbara watershed, Ethiopia. Science of the Total Environment, 622–623, 1581–1589. https://doi.org/10.1016/j.scitotenv.2017.10.034
Ghosh, P., Mukhopadhyay, A., Chanda, A., Mondal, P., Akhand, A., Mukherjee, S., Nayak, S. K., Ghosh, S., Mitra, D., Ghosh, T., & Hazra, S. (2017). Application of cellular automata and Markov-chain model in geospatial environmental modeling—A review. Remote Sensing Applications: Society and Environment, 5, 64–77. https://doi.org/10.1016/j.rsase.2017.01.005
Hansasooksin, S., Tontisirin, N., & Anantsuksomsri, S. (2024). Infrastructure-driven growth of a coastal tourist city: A case study of Pattaya, Thailand. Journal of Infrastructure, Policy and Development, 8(9), Article 8141. https://doi.org/10.24294/jipd.v8i9.8141
Hu, P., Xu, Z., Man, X., Duan, L., & Cai, T. (2025). Response of streamflow components and evapotranspiration to changes in tree species composition in a subboreal permafrost watershed in the Greater Khingan Mountains of Northeastern China. Ecological Indicators, 172, Article 113295. https://doi.org/10.1016/j.ecolind.2025.113295
Irvine, K., Likitswat, F., Sahavacharin, A., Suwanarit, A., Lertwarapornpong, T., & Chitwatkulsiri, D. (2023). The agrihood design: Valuation of ecosystem services for NbS visions in peri-urban housing estate development, Bangkok, Thailand. Journal of Architectural/Planning Research and Studies (JARS), 21(1), 115–140. https://doi.org/10.56261/jars.v21.257520
Javed, A., Neumann, A., Cai, H., Arnillas, C. A., & Arhonditsis, G. B. (2024). A reservoir based approach of the SWAT hydrological model in the Napanee River and Wilton Creek agricultural watersheds, Bay of Quinte. Journal of Great Lakes Research, 50(5), Article 102404. https://doi.org/10.1016/j.jglr.2024.102404
Kim, S., Lee, E., Hwang, H. T., Pyo, J., Yun, D., Baek, S. S., & Cho, K, H. (2024). Spatiotemporal estimation of groundwater and surface water conditions by integrating deep learning and physics-based watershed models. Water Research X, 23, Article 100228. https://doi.org/10.1016/j.wroa.2024.100228
Koren, O., & Chaves, L. F. (2025). The land use land cover change emerging infectious disease nexus reconsidered. BioScience,0, 1–7. https://doi.org/10.1093/biosci/biaf045
Likitswat, F., & Sahavacharin, A. (2022). Landscape change analysis: Ecosystem services in the peri-urban agriculture of Bangkok. Journal of Architectural/Planning Research and Studies (JARS), 20(2), 25–38. https://doi.org/10.56261/jars.v20i2.249694
Marhaento, H., Booij, M. J., Rientjes, T. H. M., & Hoekstra, A. Y. (2017). Attribution of changes in the water balance of a tropical catchment to land use change using the SWAT model. Hydrological Processes, 31(11), 2029–2040. https://doi.org/10.1002/hyp.11167
Mehra, M., & Swain, J. B. (2024). Assessment of land use land cover change and its effects using artificial neural network-based cellular automation. Journal of Engineering and Applied Science, 71, Article 70. https://doi.org/10.1186/s44147-024-00402-0
Meles, M. B., Bradford, S., Trasvina, A. C., Chen, L., Osterman, G., Hatch, T., Ajami, H., Crompton, O.,Levers, L., & Kisekka, I. (2024). Uncovering the gaps in managed aquifer recharge for sustainable groundwater management: A focus on hillslopes and mountains Isaya Kisekka. Journal of Hydrology, 639, Article 131615. https://doi.org/10.1016/j.jhydrol.2024.131615
Musie, M., Sen, S., & Chaubey, I. (2020). Hydrologic responses to climate variability and human activities in Lake Ziway watershed, Ethiopia. Water, 12(1), Article 164. https://doi.org/10.3390/w12010164
Naeem, M., Zhang, Y., Tian, X., Miao, P., Li, C., Xu, Z., Wang, L., Mumtaz, F., Tang, Z., & He, S. (2025). Assessing and predicting Bojiang lake area and LULC changes from 2000 to 2045. Journal of Hydrology: Regional Studies, 56, Article 102216. https://doi.org/10.1016/j.ejrh.2024.102216
Nigusie, A., & Dananto, M. (2021). Impact of land use / land cover change on hydrologic processes in Dijo watershed, central rift valley, Ethiopia. International Journal of Water Resources and Environmental Engineering, 13(1), 37–48. https://doi.org/10.5897/IJWREE2020.0956
Numsuk, W. (2025). Dynamics of landscape transformation and governance of Bangkok’s urban waterways. Nakhara: Journal of Environmental Design and Planning, 24(2), Article 511. https://doi.org/10.54028/NJ202524511
Pongratz, J., Schwingshackl, C., Bulran, S., Obermeier, W., Havermann, F., & Guo, S. (2021). Land use effects on climate: Current state, recent progress, and emerging topics. Current Climate Change Reports, 7, 99–120. https://doi.org/10.1007/s40641-021-00178-y
Saputra, S. F. D., Setiawan, B. I., Arif, C., Saptomo, S. K., Fitriyah, A., & Kato, T. (2025). Assessment of future water availability and seasonal patterns of dry seasons under climate change in Cidanau Watershed Banten Province, Indonesia. Journal of Hydrology: Regional Studies, 59, Article 102344. https://doi.org/10.1016/j.ejrh.2025.102344
Shawul, A. A., Chakma, S., & Melesse, A. M. (2019). The response of water balance components to land cover change based on hydrologic modeling and partial least squares regression (PLSR) analysis in the Upper Awash watershed. Journal of Hydrology: Regional Studies, 26, Article 100640. https://doi.org/10.1016/j.ejrh.2019.100640
Shekar, P. R., & Mathew, A. (2024). Morphometric analysis of watersheds: A comprehensive review of data sources, quality, and geospatial techniques. Watershed Ecology and the Environment, 6, 13–25. https://doi.org/10.1016/j.wsee.2023.12.001
Silabi, M. Z., Sadeghi, S. H., & Vafakhah, M. (2025). Soil erosion elasticity initiative for prioritizing sub-watersheds. International Soil and Water Conservation Research, 13, 277–289. https://doi.org/10.1016/j.iswcr.2024.12.001
Tan, M. L., & Yang, X. (2020). Effect of rainfall station density, distribution and missing values on SWAT outputs in tropical region. Journal of Hydrology, 584, Article 124660. https://doi.org/10.1016/j.jhydrol.2020.124660
Tapas, M. R., Etheridge, R., Tran, T. N. D., Le, M. H.,Hinckley, B., Nguyen, V. T., & Lakshmi, V. (2025). Evaluating combinations of rainfall datasets and optimization techniques for improved hydrological predictions using the SWAT+ model. Journal of Hydrology: Regional Studies, 57, Article 102134. https://doi.org/10.1016/j.ejrh.2024.102134
Teklay, A., Dile, Y. T., Setegn, S. G., Demissie, S. S., & Asfaw, D. H. (2019). Evaluation of static and dynamic land use data for watershed hydrologic process simulation: A case study in Gummara watershed, Ethiopia. Catena, 172, 65–75. https://doi.org/10.1016/j.catena.2018.08.013
Tola, B., & Deyassa, G. (2024). A modeling approach for evaluating and predicting the impacts of land use land cover changes on groundwater recharge in Walga watershed, Upper Omo basin, Central Ethiopia. Journal of Hydrology: Regional Studies, 51, Article 101659. https://doi.org/10.1016/j.ejrh.2024.101659
Tontisirin, N., & Anantsuksomsri, S. (2021). Economic development policies and land use changes in Thailand: From the Eastern Seaboard to the Eastern Economic Corridor. Sustainability, 13(11), Article 6153. https://doi.org/10.3390/su13116153
Wang, Q., Xu, Y., Wang, Y., Zhang, Y., Xiang, J., Xu, Y., & Wang, J. (2020). Individual and combined impacts of future land use and climate conditions on extreme hydrological events in a representative watershed of the Yangtze River Delta, China. Atmospheric Research, 236, Article 104805. https://doi.org/10.1016/j.atmosres.2019.104805
Wang, S. Q., Zheng, X. Q., & Zang, X. B. (2012). Accuracy assessments of land use change simulation based on Markov-cellular automata model. Procedia Environmental Sciences, 13, 1238–1245. https://doi.org/10.1016/j.proenv.2012.01.117
Xiang, Z., Moriasi, D. N., Samimi, M., Mirchi, A., Taghvaeion, S., Steiner, J. L., Verse, J.A., & Stark, P. J. (2025). SWAT-IRR: A new irrigation algorithm for soil and water assessment tool to facilitate water management and conservation in irrigated regions. Computers and Electronics in Agriculture, 232, Article 110142. https://doi.org/10.1016/j.compag.2025.110142
Yang, W., Long, D., & Bai, P. (2019). Impacts of future land cover and climate changes on runoff in the mostly afforested river watershed in North China. Journal of Hydrology, 570, 201–219. https://doi.org/10.1016/j.jhydrol.2018.12.055
Zeydalinejad, N., Javadi, A. A., & Webber, J. L. (2024). Global perspectives on groundwater infiltration to sewer networks: A threat to urban sustainability. Water Research, 262, Article 122098. https://doi.org/10.1016/j.watres.2024.122098