Evaluating and Optimizing Acoustical Reverberation Time and Material Cost for Classrooms Using Building Information Modeling (BIM) and Generative Design (GD) Tools
Main Article Content
Abstract
Reverberation time (RT) measures how long sound takes to decay in a space, affecting speech intelligibility and sound quality. Calculating RT using Sabine’s formula is time-consuming and error-prone due to manual extraction of room volume and material surface areas. Balancing RT and cost further complicates material selection. This paper automates RT calculation and optimization using Building Information Modeling (BIM) and generative design (GD). Sound absorption coefficients are input into a BIM model’s material properties, and visual programming (VP) extracts room geometries, materials, and absorption coefficients to compute RT and material costs. A multi-objective optimization algorithm in Autodesk GD identifies the best material and room height combination for cost-effective RT. A classroom case study validates the method. This approach enables fast RT calculation and helps designers select cost-efficient materials with optimal RT, aiding acoustic analysis in concert halls, auditoriums, and classrooms while supporting targeted acoustic design.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Aguilar, A. J., de la Hoz-Torres, M. L., Martínez-Aires, M. D. & Ruiz, D. P. (2022). Development of a BIM-based framework using reverberation time (BFRT) as a tool for assessing and improving building acoustic environment. Buildings, 12(5), Article 542. https://doi.org/10.3390/buildings12050542
American National Standards Institute. (2010). ANSI/ASA S12.60; American national standard, acoustical performance criteria, design requirements, and guidelines for school, Part 1: Permanent schools. American National Standards Institute.
Autodesk. (2019). What is Dynamo & How Does It Work? - Dynamo. https://primer2.dynamobim.org/1_introduction/1-what-is-dynamo
Autodesk. (2020). Running generative design - Generative design primer. https://www.generativedesign.org/03-hello-gd-for-revit/03-03_running-gd-for-revit
Autodesk. (2021a). Genetic algorithm Q&A - Generative design primer. https://www.generativedesign.org/02-deeper-dive/02-06_faq-under-the-hood
Autodesk. (2021b). Welcome - Generative design primer. https://www.generativedesign.org/
Azhar, S., & Brown, J. (2009). BIM for sustainability analyses. International Journal of Construction Education and Research, 5(4), 276–292. https://doi.org/10.1080/15578770903355657
BIM TUDublin & Harvey, K. (2021). Should acoustic simulation technology be utilised in architectural practice ? Does it have the potential for BIM integration? Capstone Reports. 33. TUDublin. https://arrow.tudublin.ie/schmuldistcap/33?utm_source=arrow.tudublin.ie%2Fschmuldistcap%2F33&utm_medium=PDF&utm_campaign=PDFCoverPages
Butorina, M., Drozdova, L., Kuklin, D., Sharkov, A., Aref’Ev, K., Sopozhnikov, S., Topazh, G., Lyamaev, B., Nagornyy, V., Simonov, A., & Muhametova, L. (2019). Implementation of noise data into building information model (BIM) to reduce noise in the environment and at workplace. IOP Conference Series: Earth and Environmental Science, 337(1), Article 012083. https://doi.org/10.1088/1755-1315/337/1/012083
Chen, Q., & Ou, D. (2021). The effects of classroom reverberation time and traffic noise on English listening comprehension of Chinese university students. Applied Acoustics, 179, Article 108082. https://doi.org/10.1016/j.apacoust.2021.108082
Deb, K., Pratab, S., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computing, 6(2), 182–197. https://doi.org/10.1109/4235.996017
Dohmen, M., Braat-Eggen, E., Kemperman, A., & Hornikx, M. (2023). The effects of noise on cognitive performance and helplessness in childhood: A review. International Journal of Environmental Research and Public Health, 20(1), Article 288. https://doi.org/10.3390/ijerph20010288
Dongre, A. R., Patil, A. P., Wahurwagh, A. J., Kothari, A., Burchundi, K., & Manohare, M. P. (2017). Acoustical characteristics of classrooms of tropical climate. Applied Acoustics, 121, 46–55. https://doi.org/10.1016/j.apacoust.2017.01.030
Eldakdoky, S. (2017). Optimizing acoustic conditions for two lecture rooms in Faculty of Agriculture, Cairo University. Ain Shams Engineering Journal, 8(4), 481–490. https://doi.org/10.1016/j.asej.2016.08.013
Galbrun, L., & Kitapci, K. (2014). Accuracy of speech transmission index predictions based on the reverberation time and signal-to-noise ratio. Applied Acoustics, 81, 1–14. https://doi.org/10.1016/j.apacoust.2014.02.001
Gholami, Z., & Jalilisadrabad, S. (2023). The concurrent effect of building height diversity and cool pavement materials on air temperature near the surface of an urban facade: A case study of Shahriar Street in Esfahan, Iran. Nakhara: Journal of Environmental Design and Planning, 22(3), Article 319. https://doi.org/10.54028/NJ202322319
International Standard International Standard. (2003). ISO_25178-2:2012. Geometrical product specifications (GPS)–surface texture: Areal, part 2: Terms, definitions and surface texture parameters. International Standard International Standard.
Jeong, K., Hong, T., Kim, J., & Cho, K. (2019). Development of a multi-objective optimization model for determining the optimal CO2 emissions reduction strategies for a multi-family housing complex. Renewable and Sustainable Energy Reviews, 110, 118–131. https://doi.org/10.1016/j.rser.2019.04.068
Kendrick, P., Shiers, N., Conetta, R., Cox, T. J., Shield, B. M., & Mydlarz, C. (2012). Blind estimation of reverberation time in classrooms and hospital wards. Applied Acoustics, 73(8), 770–780. https://doi.org/10.1016/j.apacoust.2012.02.010
Kensek, K. (2015). Visual programing for building information modeling: Energy and shading analysis case study. Journal of Green Building, 10(4), 28–43. https://doi.org/10.3992/jgb.10.4.28
Klatte, M., Hellbrück, J., Seidel, J., & Leistner, P. (2010). Effects of classroom acoustics on performance and well-being in elementary school children: A field study. Environment and Behavior, 42(5), 659–692. https://doi.org/10.1177/0013916509336813
Leetongin, P., Inprom, N., Srivanit, M., & Jareemit, D. (2022). The effects of design combinations of surface materials and plants on outdoor thermal conditions during summer around a single-detached house: A numerical analysis. Nakhara: Journal of Environmental Design and Planning, 21(3), Article 218. https://doi.org/10.54028/NJ202221218
Leitão, A., Santos, L., & Lopes, J. (2012). For generative Design: Programming languages for generative design. International Journal of Architectural Computing, 01(10), 139–162. https://doi.org/10.1260/1478-0771.10.1.139
Lim, Y. W., Seghier, T. E., Harun, M. F., Ahmad, M. H., Samah, A. A., & Majid, H. A. (2019). Computational Bim for green retrofitting of the existing building envelope. WIT Transactions on the Built Environment, 192, 33–44. https://doi.org/10.2495/BIM190041
Malleson, A., Huber, R., Watson, D., Heiskanen, A., & Finner, C. (2013). NBS International BIM Report - 2013. National Building Specification (NBS). http://www.thenbs.com/pdfs/NBS-International-BIM-Report_2013.pdf
Mastino, C. C., Baccoli, R., Frattolillo, A., Marini, M., & Salaris, C. (2019). Acoustic insulation and building information modeling: A model of calculation for the code checking in the forecast phase and of measurement of performance. Proceedings of Building Simulation 2019: 16th Conference of IBPSA (pp. 205–212). International Building Performance Simulation Association. https://doi.org/10.26868/25222708.2019.211351
Maxwell, L. E., & Evans, G. W. (2000). The effects of noise on pre-school children’s pre-reading skills. Journal of Environmental Psychology, 20(1), 91–97. https://doi.org/10.1006/jevp.1999.0144
McKellin, W. H., Shahin, K., Hodgson, M., Jamieson, J., & Pichora-Fuller, M. K. (2011). Noisy zones of proximal development: Conversation in noisy classrooms. Journal of Sociolinguistics, 15(1), 65–93. https://doi.org/https://doi.org/10.1111/j.1467-9841.2010.00467.x
Minelli, G., Puglisi, G. E., & Astolfi, A. (2022). Acoustical parameters for learning in classroom: A review. Building and Environment, 208, Article 108582. https://doi.org/10.1016/j.buildenv.2021.108582
Nasruddin, Sholahudin, Satrio, P., Mahlia, T. M. I., Giannetti, N., & Saito, K. (2019). Optimization of HVAC system energy consumption in a building using artificial neural network and multi-objective genetic algorithm. Sustainable Energy Technologies and Assessments, 35, 48–57. https://doi.org/10.1016/j.seta.2019.06.002
Nik-Bakht, M., Lee, J., & Dehkordi, S. H. (2021). Bim-based reverberation time analysis. Journal of Information Technology in Construction, 26, 28–38. https://doi.org/10.36680/j.itcon.2021.003
Pääkkönen, R., Vehviläinen, T., Jokitulppo, J., Niemi, O., Nenonen, S., & Vinha, J. (2015). Acoustics and new learning environment - A case study. Applied Acoustics, 100, 74–78. https://doi.org/10.1016/j.apacoust.2015.07.001
Panraluk, C., & Sreshthaputra, A. (2020). Development of guidelines for enhancement of thermal comfort and energy efficiency during winter for Thailand’s senior centers using surveys and computer simulation. Nakhara: Journal of Environmental Design and Planning, 19, 79–96. https://doi.org/10.54028/NJ2020197996
Šujanová, P., & Müllner, H. (2018). Development of acoustic parameter calculation tool for BIM supporting software package. Proceedings of the 8th Congress of the Alps Adria Acoustics Association (pp. 229–232). Acoustical Society of Croatia (ASC), Croatia. https://www.akustika.hr/_download/repository/8th_AAAA_Proceedings.pdf
Puglisi, G. E., Warzybok, A., Astolfi, A., & Kollmeier, B. (2021). Effect of reverberation and noise type on speech intelligibility in real complex acoustic scenarios. Building and Environment, 204, Article 108137. https://doi.org/10.1016/j.buildenv.2021.108137
Ratnam, R., Jones, D. L., Wheeler, B. C., O’Brien, W. D., Lansing, C. R., & Feng, A. S. (2003). Blind estimation of reverberation time. The Journal of the Acoustical Society of America, 114(5), Article 2877. https://doi.org/10.1121/1.1616578
Russo, D., & Ruggiero, A. (2019). Choice of the optimal acoustic design of a school classroom and experimental verification. Applied Acoustics, 146, 280–287. https://doi.org/10.1016/j.apacoust.2018.11.019
Seghier, T. E., Ahmad, M. H., Yaik Wah, L., & Harun, M. F. (2020). Data management using computational Building Information Modeling for building envelope retrofitting. In R. Roggema, & A. Roggema (Eds.), Smart and Sustainable Cities and Buildings (pp. 205–216). Springer, Cham. https://doi.org/10.1007/978-3-030-37635-2_13
Seghier, T. E., Khosakitchalert, C. & Lim, Y. W. (2022a). A BIM-based method to automate material and resources assessment for the green building index (GBI) criteria. In T. Kang, & Y. Lee (Eds.), Proceedings of 2021 4th International Conference on Civil Engineering and Architecture (pp. 527–536). Springer, Singapore. https://doi.org/10.1007/978-981-16-6932-3_46
Seghier, T. E., Lim, Y. W., Harun, M. F., Ahmad, M. H., Samah, A. A. & Majid, H. A. (2022b). BIM-based retrofit method (RBIM) for building envelope thermal performance optimization. Energy and Buildings, 256, Article 111693. https://doi.org/10.1016/j.enbuild.2021.111693
Sofian, T., Sudradjat, I., & Tedjo, B. (2020). Materiality and sensibility: Phenomenological studies of brick as architectural material. Nakhara: Journal of Environmental Design and Planning, 18, 1–10. https://doi.org/10.54028/NJ202018110
Spence, C. (2020). Senses of place: Architectural design for the multisensory mind. Cognitive Research: Principles and Implications, 5(1), Article 46. https://doi.org/10.1186/s41235-020-00243-4
Sušnik, M., Tagliabue, L. C., & Cairoli, M. (2021). BIM-based energy and acoustic analysis through CVE tools. Energy Reports, 7, 8228–8237. https://doi.org/10.1016/j.egyr.2021.06.013
Tabatabaei Manesh, M., Nikkhah Dehnavi, A., Tahsildoost, M., & Alambeigi, P. (2024). Acoustic design evaluation in educational buildings using artificial intelligence. Building and Environment, 261, Article 111695. https://doi.org/10.1016/j.buildenv.2024.111695
Tan, Y., Fang, Y., Zhou, T., Wang, Q., & Cheng, J. C. P. (2017). Improve Indoor acoustics performance by using building information modeling. ISARC 2017 - Proceedings of the 34th International Symposium on Automation and Robotics in Construction, ISARC (pp. 959–966). The International Association for Automation and Robotics in Construction. https://doi.org/10.22260/ISARC2017/0133
Vachhani, V. L., Dabhi, V. K., & Prajapati, H. B. (2015). Survey of multi objective evolutionary algorithms. IEEE International Conference on Circuit, Power and Computing Technologies, ICCPCT 2015, March. IEEE. https://doi.org/10.1109/ICCPCT.2015.7159422