Predicting Household Expenditure Using Machine Learning Techniques: A Case of Cambodia
Main Article Content
Abstract
This study aimed to predict household expenditure using a combination of survey and geospatial data. A web-based application operating on the Google Earth Engine platform has been specifically developed for this research, providing a set of satellite-based indicators. These data were spatially averaged at the district level and integrated with household nonfood expenditures, a proxy of socioeconomic conditions, derived from the World Bank’s 2019 Living Standards Measurement Study (LSMS). Four machine learning algorithms were applied. By using root mean square error as the goodness-of-fit criterion, a random forest algorithm yielded the highest forecasting precision, followed by support vector machine, neural network, and generalized least squares. In addition, variable importance and minimal depth analyses were conducted, indicating that the geospatial indicators have moderate contributive powers in predicting socioeconomic conditions. Conversely, the predictive powers of variables derived from the LSMS were mixed. Some asset ownership yielded a high explanatory power, whereas some were minimal. The attained results suggest future development aimed at enhancing accuracy. Additionally, the findings revealed an association between economic activity density and household expenditure, recommending regional development promotion through urbanization and transition from agriculture to other economic sectors.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Aiken, E., Bellue, S., Karlan, D., Udry, C. R., & Blumenstock, J. (2022). Machine learning and mobile phone data can improve the targeting of humanitarian assistance. Nature, 603, 864–870. https://doi.org/10.1038/s41586-022-04484-9
Amare, M., Jensen, N. D., Shiferaw, B., & Cissé, J. D. (2018). Rainfall shocks and agricultural productivity: Implication for rural household consumption. Agricultural Systems, 166, 79–89. https://doi.org/10.1016/j.agsy.2018.07.014
Anesti, N., Kalamara, E., & Kapeta, G. (2021). Forecasting with machine learning methods and multiple large datasets. Bank of England Staff Working Paper No. 923. https://www.bankofengland.co.uk/working-paper/2021/forecasting-uk-gdp-growth-with-large-survey-panels
Asongu, S.A. (2013). The impact of mobile phone penetration on African inequality. AGDI Working Paper, No. WP/13/021, African Governance and Development Institute (AGDI). https://www.econstor.eu/bitstream/10419/123599/1/agdi-wp13-021.pdf
Arezki, R., & Brückner, M. (2012). Rainfall, financial development, and remittances: Evidence from Sub-Saharan Africa. Journal of International Economics, 87(2), 377–385. https://doi.org/10.1016/j.jinteco.2011.12.010
Asian Development Bank. (2022). Cambodia, key indicators [Dataset]. ADB Data Library. https://data.adb.org/dataset/cambodia-key-indicators
Ayush, K., Uzkent, B., Tanmay, K., Burke, M., Lobell, D., & Ermon, S. (2021). Efficient poverty mapping from high resolution remote sensing images. Proceedings of the AAAI Conference on Artificial Intelligence, 35(1), 12–20. https://doi.org/10.1609/aaai.v35i1.16072
Barrios, S., Bertinelli, L., & Strobl, E. (2010). Trends in rainfall and economic growth in Africa: A neglected cause of the African growth tragedy. Review of Economics and Statistics, 92, 350–366. https://www.jstor.org/stable/pdf/27867541.pdf
Bhattacharya, H., & Innes, R. (2006). Is there a nexus between poverty and environment in rural India? Proceedings of the American Agricultural Economics Association Annual Meeting, July 23-26, Long Beach, CA, USA (pp. 23–26).
Blumenstock, J., Cadamuro, G., & On, R. (2015). Predicting poverty and wealth from mobile phone metadata. Science, 350(6264), 1073–1076. https://doi.org/10.1126/science.aac4420
Blumenstock, J. E. (2016). Fighting poverty with data. Science, 353(6301), 753–754. https://doi.org/10.1126/science.aah5217
Blumenstock, J., Karlan, D., & Udry, C. (2021). Using mobile phone and satellite data to target emergency cash transfers. CEGA Blog Post. https://poverty-action.org/study/using-mobile-phone-and-satellite-data-target-emergency-cash-transfers-togo
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324
Brown, C., & Lall, U. (2006). Water and economic development: The role of variability and a framework for resilience. Natural Resources Forum, 30(4), 306–317. https://doi.org/10.1111/j.1477-8947.2006.00118.x
Burke, M., Driscoll, A., Lobell, D. B., & Ermon, S. (2021). Using satellite imagery to understand and promote sustainable development. Science, 371(6535), Article eabe8628. https://doi.org/10.1126/science.abe8628
Buyantuyev, A., & Wu, J. (2009). Urban heat islands and landscape heterogeneity: Linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecology, 25, 17–33. https://doi.org/10.1007/s10980-009-9402-4
Chen, X., Liu, C., & Yu, X. (2022). Urbanization, economic development, and ecological environment: Evidence from provincial panel data in China. Sustainability, 14(3), Article 1124. https://doi.org/10.3390/su14031124
Choi, H., & Varian, H. (2012). Predicting the present with Google Trends. Economic Record, 88(s1), 2–9. https://doi.org/10.1111/j.1475-4932.2012.00809.x
Ciaburro, G., & Venkateswaran, B. (2017). Neural networks with R: Smart models using CNN, RNN, deep learning, and artificial intelligence principles. Packt Publishing.
Damania, R., Desbureaux, S., & Zaveri, E. (2020). Does rainfall matter for economic growth? Evidence from global sub-national data (1990–2014). Journal of Environmental Economics and Management, 102, Article 102335. https://doi.org/10.1016/j.jeem.2020.102335
Díaz, I., Hubbard, A., Decker, A., & Cohen, M. (2015). Variable importance and prediction methods for longitudinal problems with missing variables. PLoS ONE, 10(3), Article e0120031. https://doi.org/10.1371/journal.pone.0120031
Dissanayake, D., Morimoto, T., Murayama, Y., Ranagalage, M., & Handayani, H. H. (2019). Impact of urban surface characteristics and socio-economic variables on the spatial variation of land surface temperature in Lagos city, Nigeria. Sustainability, 11(1), 25. https://doi.org/10.3390/su11010025
Elbers, C., Lanjouw, J. O., & Lanjouw, P. F. (2002). Micro-level estimation of welfare. Policy Research Working Paper 2911, World Bank, Washington, DC. http://documents.worldbank.org/curated/en/362131468739473297/Micro-level-estimation-of-welfare
Eng, R., & Lim, S. (2024). The economic development and level of poverty in Cambodia. Educational Administration: Theory and Practice, 30(6), 3693–3701. https://doi.org/10.53555/kuey.v30i6.5806
Engstrom, R., Hersh, J., & Newhouse, D. (2017). Poverty from space: Using high-resolution satellite imagery for estimating economic well-being. PLOS ONE, 12(9), Article e0184396. https://doi.org/10.1371/journal.pone.0184396
Erenstein, O., Hellin, J., & Chandna, P. (2010). Poverty mapping based on livelihood assets: A meso-level application in the Indo-Gangetic Plains, India. Applied Geography, 30(1), 112–125. https://doi.org/10.1016/j.apgeog.2009.05.001
Fatehkia, M., Tingzon, I., Orden, A., Sy, S., Sekara, V., Garcia-Herranz, M., & Weber, I. (2020). Mapping socioeconomic indicators using social media advertising data. EPJ Data Science, 9(1), Article 22. https://doi.org/10.1140/epjds/s13688-020-00235-w
Fujii, T. (2007). To use or not to use?: Poverty mapping in Cambodia. In T. Bedi, A. Coudouel, & K. Simler (Eds.), More than a pretty picture: Using poverty maps to design better policies and interventions (pp. 125–142). https://ink.library.smu.edu.sg/cgi/viewcontent.cgi?article=1601&context=soe_research
Fujii, T. (2010). Micro-level estimation of child malnutrition indicators in Cambodia. Oxford University Press.
Gao, B. C. (1996). NDWI—A normalized difference vegetation index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266. http://dx.doi.org/10.1016/S0034-4257(96)00067-3
Gilmont, M., Hall, J. W., Grey, D., Dadson, S. J., Abele, S., & Simpson, M. (2018). Analysis of the relationship between rainfall and economic growth in Indian states. Global Environmental Change, 49, 56–72. https://doi.org/10.1016/j.gloenvcha.2018.01.003
Gu, Y., Brown, J. F., Verdin, J. P., & Wardlow, B. (2007). A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central great plains of the United States. Geophysical Research Letters, 34(6), Article L06407. https://doi.org/10.1029/2006GL029127
Guo, Y., Zeng, J., Wu, W., Hu, S., Liu, G., Wu, L., & Bryant, C. R. (2021). Spatial and temporal changes in vegetation in the Ruoergai region, China. Forests, 12(1), 76. https://doi.org/10.3390/f12010076
Hall, O., Dompae, F., Wahab, I., & Dzanku, F. M. (2023). A review of machine learning and satellite imagery for poverty prediction: Implications for development research and applications. Journal of International Development, 35(7), 1–16. https://doi.org/10.1002/jid.3751
Hansen, K., & Top, N. (2006). Natural forest benefits and economic analysis of natural forest conversion in Cambodia. Working Paper (Vol. 33), Cambodia Development Resource Institute, Phnom Penh. https://cdri.org.kh/storage/pdf/wp33e_1617794583.pdf
Hastie, T., Tibshirani, R., & Friedman, J. (2009). Random forests. The Elements of Statistical Learning (pp. 587–604). Springer.
Head, A., Manguin, M., Tran, N., & Blumenstock, J. E. (2017). Can human development be measured with satellite imagery? Proceedings of the Ninth International Conference on Information and Communication Technologies and Development, Lahore, Pakistan (Article 8). https://doi.org/10.1145/3136560.3136576
Huang, G., Zhou, W., & Cadenasso, M. L. (2011). Is everyone hot in the city? Spatial pattern of land surface temperatures, land cover and neighborhood socioeconomic characteristics in Baltimore, MD. Journal of Environment Management, 92(7), 1753–1759. https://doi.org/10.1016/j.jenvman.2011.02.006
Huguet, J. W., Chamratrithirong, A., Rao, N. R., & Than, S. S. (2000). Results of the 1998 population census in Cambodia. Asia-Pacific Population Journal, 15(3), 3–22. https://repository.unescap.org/rest/bitstreams/a945053c-b447-4754-ac33-01c15a647d35/retrieve
Ishwaran, H. (2007). Variable importance in binary regression trees and forests. Electronic Journal of Statistics, 1, 519–537. https://doi.org/10.1214/07-EJS039
Ishwaran, H., Kogalur, U. B., Gorodeski, E. Z., Minn, A. J., & Lauer, M. S. (2010). High-dimensional variable selection for survival data. Journal of the American Statistical Association, 105(489), 205–217. https://doi.org/10.1198/jasa.2009.tm08622
Jean, N., Burke, M., Xie, M., Davis, W. M., Lobell, D. B., & Ermon, S. (2016). Combining satellite imagery and machine learning to predict poverty. Science, 353(6301), 790–794. https://doi.org/10.1126/science.aaf7894
Jiao, X., Smith-Hall, C., & Theilade, I. (2015). Rural household incomes and land grabbing in Cambodia. Land Use Policy, 48, 317–328. https://doi.org/10.1016/j.landusepol.2015.06.008
Jin, X., Wan, L., Zhang, Y. K., & Schaepman, M. (2008). Impact of economic growth on vegetation health in China based on GIMMS NDVI. International Journal of Remote Sensing, 29(13), 3715–3726. https://doi.org/10.1080/01431160701772542
John, A., Allison, M., Amadi, D. E., & Allison, C. (2019). Anti-democratic spaces and impoverishment: Role of roads in low-income residential areas. Nakhara: Journal of Environmental Design and Planning, 16, 15–32. https://doi.org/10.54028/NJ2019161532
Kristjanson, P., Radeny, M., Baltenweck, I., Ogutu, J., & Notenbaert, A. (2005). Livelihood mapping and poverty correlates at a meso-level in Kenya. Food Policy, 30(5–6), 568–583. https://doi.org/10.1016/j.foodpol.2005.10.002
Li, L., Tan, Y., Ying, S., Yu, Z., Li, Z., & Lan, H. (2014). Impact of land cover and population density on land surface temperature: Case study in Wuhan, China. Journal of Applied Remote Sensing, 8(1), Article 084993. https://doi.org/10.1117/1.JRS.8.084993
Li, G. Y., Chen, S. S., Yan, Y., & Yu, C. (2015). Effects of urbanization on vegetation degradation in the Yangtze River Delta of China: Assessment based on SPOT-VGT NDVI. Journal of Urban Planning and Development, 141(4), Article 05014026. https://doi.org/10.1061/(ASCE)UP.1943-5444.0000249
Li, M., Wu, T., Wang, S., Sang, S., & Zhao, Y. (2022). Phenology–gross primary productivity (GPP) method for crop information extraction in areas sensitive to non-point source pollution and its influence on pollution intensity. Remote Sensing, 14(12), Article 2833. http://dx.doi.org/10.3390/rs14122833
Liu, F., Xiao, X., Qin, Y., Yan, H., Huang, J., Wu, X., Zhang, Y., Zou, Z., & Doughty, R. (2022). Large spatial variation and stagnation of cropland gross primary production increases the challenges of sustainable grain production and food security in China. Science of the Total Environment, 811, Article 151408. https://doi.org/10.1016/j.scitotenv.2021.151408
Liaqut, A., Younes, I., Sadaf, R., & Zafar, H. (2019). Impact of urbanization growth on land surface temperature using remote sensing and GIS: A case study of Gujranwala City, Punjab, Pakistan. International Journal of Economic Environment Geology, 9, 44–49. https://www.researchgate.net/publication/330441884_Impact_of_Urbanization_Growth_on_Land_Surface_Temperature_using_remote_sensing_and_GIS_A_Case_Study_of_Gujranwala_City_Punjab_Pakistan
Llorente, A., Garcia-Herranz, M., Cebrian, M., & Moro, E. (2015). Social media fingerprints of unemployment. PLoS ONE, 10(5), Article e0128692. https://doi.org/10.1371/journal.pone.0128692
Mika, K., Minna, M., Noora, V., Jyrki, L., Jari, K. O., Anna, A., Eliyan, C., Dany, V., Maarit, K., & Nicholas, H. (2021). Situation analysis of energy use and consumption in Cambodia: household access to energy. Environment, Development and Sustainability, 23, 18631–18655. https://doi.org/10.1007/s10668-021-01443-8
McFeeters, K. (1996). The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714
McKenney, B., & Tola, P. (2002). Natural resources and rural livelihoods in Cambodia: A baseline assessment. Working Paper (Vol. 23), Cambodia Development Resource Institute, Phnom Penh. https://cdri.org.kh/storage/pdf/wp23e_1617794774.pdf
Morikawa, R. (2014). Remote sensing tools for evaluating poverty alleviation projects: A case study in Tanzania. Procedia Engineering, 78, 178–187. https://doi.org/10.1016/j.proeng.2014.07.055
Mourad, R., Jaafar, H., Anderson, M., & Gao, F. (2020). Assessment of leaf area index models using harmonized landsat and sentinel-2 surface reflectance data over a semi-arid irrigated landscape. Remote Sensing, 12(19), Article 3121. http://dx.doi.org/10.3390/rs12193121
Mulovhedzi, N., Araya, N., Mengistu, M., Fessehazion, M., du Plooy, C., Araya, H., & van der Laan, M. (2020). Estimating evapotranspiration and determining crop coefficients of irrigated sweet potato (Ipomoea batatas) grown in a semi-arid climate. Agricultural Water Management, 233, Article 106099. https://doi.org/10.1016/j.agwat.2020.106099
Myneni, R. B., Hoffman, S., Knyazikhin, Y., Privette, J. L., Glassy, J., Tian, Y., Wang, Y., Song, X., Zhang, Y., Smith, G. R., Lotsch, A., Friedl, M., Morisette, J. T., Votava, P., Nemani, R. R., & Running, S. W. (2002). Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment, 83(1–2), 214–231. https://doi.org/10.1016/S0034-4257(02)00074-3
National Institute of Statistics. (2017). Report of Cambodia socio-economic survey 2017. Ministry of Planning. https://www.nis.gov.kh/nis/CSES/Final%20Report%20CSES%202017.pdf
National Institute of Statistics. (2019). Cambodia Living Standards Measurement Study - Plus 2019-2020. The World Bank. https://doi.org/10.48529/agcn-nn81
National Institute of Statistics. (2021). Report of Cambodia socio-economic survey 2021. Ministry of Planning. https://www.nis.gov.kh/nis/CSES/Final%20Report%20of%20Cambodia%20Socio-Economic%20Survey%202021_EN.pdf
Noeurn, V. (2020). Factors affecting electricity consumption of residential consumers in Cambodia. IOP Conf. Series: Earth and Environmental Science, 746, Article 012034. https://doi.org/10.1088/1755-1315/746/1/012034
Pandit, P., Krishnamurthy, K., & Bakshi, B. (2022). Chapter 22 - Prediction of crop yield and pest-disease infestation. In A. Abraham, S. Dash, J. J.P.C. Rodrigues, B. Acharya, & S. K. Pani (Eds.), Intelligent Data-Centric Systems, AI, Edge and IoT-based Smart Agriculture (pp. 375–393). Academic Press. https://doi.org/10.1016/B978-0-12-823694-9.00021-9
Pokhriyal, N., & Jacques, D. C. (2017). Combining disparate data sources for improved poverty prediction and mapping. Proceedings of the National Academy of Sciences of the United States of America, 114(46), E9783–E9792. https://doi.org/10.1073/pnas.1700319114
Puttanapong, N., Prasertsoong, N., & Peechapat, W. (2023). Predicting provincial gross domestic product using satellite data and machine learning methods: A case study of Thailand. Asian Development Review, 40(2), 39–85. https://doi.org/10.1142/S0116110523400024
Puttanapong, N., Martinez, A., Bulan, J. A. N., Addawe, M., Durante, R. L., & Martillan, M. (2022). Predicting poverty using geospatial data in Thailand. ISPRS International Journal of Geo-Information, 11(5), Article 293. http://dx.doi.org/10.3390/ijgi11050293
Richardson, C.J. (2007). How much did droughts matter? Linking rainfall and GDP growth in Zimbabwe. African Affairs, 106(424), 463–478. https://www.jstor.org/stable/4496463
Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., & Hashimoto, H. (2004). A continuous satellite-derived measure of global terrestrial primary production. BioScience, 54(6), 547–560. https://doi.org/10.1641/0006-3568(2004)054[0547:ACSMOG]2.0.CO;2
Ruthirako, P., Darnsawasdi, R., & Chatupote, W. (2015). Intensity and pattern of land surface temperature in Hat Yai City, Thailand. Walailak Journal of Science and Technology, 12(1), 83–94. https://wjst.wu.ac.th/index.php/wjst/article/view/977
Seifert, S., Gundlach, S., & Szymczak, S. (2019). Surrogate minimal depth as an importance measure for variables in random forests. Bioinformatics, 35(19), 3663–3671. https://doi.org/10.1093/bioinformatics/btz149
Sharma, R., Nguyen, T. T., Grote, U., & Nguyen, T. T. (2016). Changing livelihoods in rural Cambodia: Evidence from panel household data in Stung Treng. ZEF Working Paper Series (No. 149), Center for Development Research (ZEF), University of Bonn. https://www.econstor.eu/bitstream/10419/144856/1/857348353.pdf
Shi, K., Chang, Z., Chen, Z., Wu, J., & Yu, B. (2020). Identifying and evaluating poverty using multisource remote sensing and point of interest (POI) data: A case study of Chongqing, China. Journal of Cleaner Production, 255, Article 120245. https://doi.org/10.1016/j.jclepro.2020.120245
Sophal, C., & Acharya, S. (2002). Facing the challenge of rural livelihoods: A perspective from nine villages in Cambodia. Cambodia Development Resource Institute, Phnom Penh.
Sruthi, S., & Aslam, M. M. (2015). Agricultural drought analysis using the NDVI and land surface temperature data; a case study of Raichur district. Aquatic Procedia, 4, 1258–1264. https://doi.org/10.1016/j.aqpro.2015.02.164
Steele, J. E., Sundsøy, P. R., Pezzulo, C., Alegana, V. A., Bird, T. J., Blumenstock, J., Bjelland, J., Engø-Monsen, K., de Montjoye, Y.-A., & Iqbal, A. M. (2017). Mapping poverty using mobile phone and satellite data. Journal of the Royal Society Interface, 14(127), Article 20160690. https://doi.org/10.1098/rsif.2016.0690
Strobl, C., Boulesteix, A. L., Zeileis, A., & Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8(1), Article 25. https://doi.org/10.1186/1471-2105-8-25
Takada, S., Morikawa, S., Idei, R., & Kato, H. (2021). Impacts of improvements in rural roads on household income through the enhancement of market accessibility in rural areas of Cambodia, Transportation, 48:2857–2881. https://doi.org/10.1007/s11116-020-10150-8
Thammapornpilas, J. (2015). Urban spatial development to mitigate urban heat Island effect in the inner area of Bangkok. Nakhara: Journal of Environmental Design and Planning, 11, 29–40. https://ph01.tci-thaijo.org/index.php/nakhara/article/view/104849
Thiede, B. C. (2014). Rainfall shocks and within-community wealth inequality: Evidence from rural Ethiopia. World Development, 64, 181–193. https://doi.org/10.1016/j.worlddev.2014.05.028
Tochaiwat, K., & Pultawee, P. (2024). House type specification for housing development project using machine learning techniques: A study from Bangkok metropolitan region, Thailand. Nakhara: Journal of Environmental Design and Planning, 23(1), Article 403. https://doi.org/10.54028/NJ202423403
Tong, K., & Sry, B. (2011). Poverty and environmental links: The case of rural Cambodia. Working Paper (Vol. 64), Cambodia Development Resource Institute, Phnom Penh. https://cdri.org.kh/storage/pdf/wp64e_1617793884.pdf
United Nations Development Programme. (2022). Human development report 2021/2022. RR Donnelley Company. https://hdr.undp.org/system/files/documents/global-report-document/hdr2021-22overviewen.pdf
van der Laan, M. J. (2006). Statistical inference for variable importance. International Journal of Biostatistics, 2(1), Article 2. https://doi.org/10.2202/1557-4679.1008
Vapnik, V. (1998). Statistical learning theory. John Wiley & Sons, Inc.
Yeh, C., Perez, A., Driscoll, A., Azzari, G., & Lobell, D. (2020). Using pu.blicly available satellite imagery and deep learning to understand economic well-being in Africa. Nature Communications, 11, Article 2583. https://doi.org/10.1038/s41467-020-16185-w
Wan Mohd Jaafar, W. S., Abdul Maulud, K. N., Muhmad Kamarulzaman, A. M., Raihan, A., Md Sah, S., Ahmad, A., Saad, S. N. M., Mohd Azmi, A. T., Jusoh Syukri, N. K. A., & Razzaq Khan, W. (2020). The influence of deforestation on land surface temperature: A case study of Perak and Kedah, Malaysia. Forests, 11, 670. https://doi.org/10.3390/f11060670
Wang, Y., Wang, B., & Zhang, X. (2012). A new application of the support vector regression on the construction of financial conditions index to CPI prediction. Procedia Computer Science, 9, 1263–1272. https://doi.org/10.1016/j.procs.2012.04.138
Wikimedia Commons. (2020). Provincial boundaries in Cambodia [Map]. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Provincial_Boundaries_in_Cambodia.svg
Wong, G., & Shuaibim, A. (2023). Model selection and optimization for poverty prediction on household data from Cambodia. Journal of Emerging Investigators, 6, 1–11. https://doi.org/10.59720/22-290
World Bank. (2022). Cambodia poverty assessment 2022: Toward a more inclusive and resilient Cambodia. https://www.worldbank.org/en/country/cambodia/publication/cambodia-poverty-assessment-2022-toward-a-more-inclusive-and-resilient-cambodia
Youneszadeh, S., Amiri, N., & Pilesjo, P. (2015). The effect of land use change on land surface temperature in the Netherlands. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1/W5, 745–748. https://doi.org/10.5194/isprsarchives-XL-1-W5-745-2015
Zhang, X., Hu, L., & Wang, Z. (2010). Multiple kernel support vector regression for economic forecasting. International Conference on Management Science & Engineering 17th Annual Conference Proceedings (pp. 129-134). IEEE. https://doi.org/10.1109/ICMSE.2010.5719795
Zheng, G., & Moskal, L. M. (2009). Retrieving leaf area index (LAI) using remote sensing: Theories, methods and sensors. Sensors, 9(4), 2719–2745. https://doi.org/10.3390/s90402719
Zhou, Y., & Liu, Y. (2022). The geography of poverty: Review and research prospects. Journal of Rural Studies, 93, 408–416. https://doi.org/10.1016/j.jrurstud.2019.01.008