Preparation of graphene oxide composited zinc oxide films by electrostatic spray deposition for humidity sensors

Authors

  • Thutiyaporn Thiwawong Electronics and Control Systems for Nanodevices Research Laboratory, College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok, 10520 Thailand
  • Thitiwat Maboonchauy Electronics and Control Systems for Nanodevices Research Laboratory, College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok, 10520 Thailand
  • Korakot Onlaor Electronics and Control Systems for Nanodevices Research Laboratory, College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok, 10520 Thailand
  • Benchapol Tunhoo Electronics and Control Systems for Nanodevices Research Laboratory, College of Materials Innovation and Technology, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Road, Bangkok, 10520 Thailand

DOI:

https://doi.org/10.55674/jmsae.v12i3.252232

Keywords:

Humidity sensor, ZnO, Graphene oxide

Abstract

This work aimed to study the preparation of graphene oxide (GO) and zinc oxide (ZnO) composited films by electrostatic spray deposition for use in fabricated humidity sensors. The physical properties of prepared films were examined with X-ray diffraction, Raman spectroscopy, and scanning electron microscope. Subsequently, a humidity sensor was fabricated using a low-cost interdigitated electrode pattern with the print circuit board. The humidity sensing behaviors were assessed with fixed humidity levels in a saturated aqueous salt solution in the humidity range of 11 – 93%RH. The impedance value of the device was obtained with a precision LCR meter. It was found that the composited film of 0.50 %wt. GO demonstrated the highest humidity response with optimized humidity sensitivity, hysteresis error, and response/recovery times of 2.68 ´ 103, 4.89%, and 228/19 s, respectively. Moreover, the equivalent circuits for the prepared device at various humidity levels were acquired with impedance spectroscopy to propose the mechanism for the humidity sensing of the device.

References

L. Gu, K. Zheng, Y. Zhou, J. Li, X. Mo, G. R. Patzke, G. Chen, Humidity sensors based on ZnO/TiO2 core/shell nanorod arrays with enhanced sensitivity, Sens. Actuators B Chem. 159(1) (2011) 1 – 7.

W. Yao, X. ChenJ. Zhang. A capacitive humidity sensor based on gold–PVA core–shell nanocomposites. Sens, Actuators B Chem. 145(1) (2010) 327 – 333.

H. -W. Yu, H. K. Kim, T. Kim, K. M. Bae, S. M. Seo, J.-M. Kim, T. J. KangY. H. Kim, Self-Powered Humidity Sensor Based on Graphene Oxide Composite Film Intercalated by Poly(Sodium

-Styrenesulfonate), ACS Appl. Mater. Interfaces. 6(11) (2014) 8320 – 8326.

Z. Lin, F. Guo, C. Wang, X. Wang, K. WangY. Qu. Preparation and sensing properties of hierarchical 3D assembled porous ZnO from zinc hydroxide carbonate. RSC Adv. 4(10) (2014) 5122 – 5129.

A. Manekkathodi, M. -Y. Lu, C. W. Wang, L. -J. Chen, Direct Growth of Aligned Zinc Oxide Nanorods on Paper Substrates for Low-Cost Flexible Electronics, Adv. Mater. 22(36) (2010) 4059 – 4063.

R. Könenkamp, R. C. WordC. Schlegel. Vertical nanowire light-emitting diode, Appl. Phys. Lett. 85(24) (2004) 6004 – 6006.

J. B. BaxterE. S. Aydil. Nanowire-based dye-sensitized solar cells, Appl. Phys. Lett. 86(5) (2005) 053114.

S.-P. Chang, S. -J. Chang, C.-Y. Lu, M. -J. Li, C. -L. Hsu, Y. -Z. Chiou, T. -J. Hsueh, I. -C. Chen, A ZnO nanowire-based humidity sensor, Superlattices Microstruct. 47(6) (2010) 772 – 778.

R. Zhang, P.-G. Yin, N. Wang, L. Guo, Photoluminescence and Raman scattering of ZnO nanorods, Solid State Sci. 11(4) (2009) 865 – 869.

A. Ismail, M. Mamat, N. Md, Fabrication of hierarchical Sn-doped ZnO nanorod arrays through sonicated sol− gel immersion for room temperature, resistive-type humidity sensor applications, Ceram. Int. 42(8) (2016) 9785 – 9795.

Y. Yao, X. Chen, H. Guo, Z. Wu, Graphene oxide thin film coated quartz crystal microbalance for humidity detection, Appl. Surf. Sci. 257(17) (2011) 7778 –7782.

A. Chavez-Valdez, M. S. P. Shaffer, A. R. Boccaccini, Applications of Graphene Electrophoretic Deposition, A Review. J. Phys. Chem. B. 117(6) (2013) 1502 –1515.

S. ParkR. S. Ruoff. Chemical methods for the production of graphenes. Nat. Nanotechnol. 4(4) (2009) 217 – 224.

H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, M. S. Dresselhaus, Ultrahigh humidity sensitivity of graphene oxide, Sci. Rep. 3(1) (2013) 2714.

S. Borini, R. White, D. Wei, M. Astley, S. Haque, E. Spigone, N. Harris, J. Kivioja, T. Ryhänen, Ultrafast Graphene Oxide Humidity Sensors, ACS Nano. 7(12) (2013) 11166 – 11173.

M. Cloupeau, B. Prunet-Foch, Electrohydrodynamic spraying functioning modes: a critical review. J. Aerosol Sci. 25(6) (1994) 1021 – 1036.

D. Kang, J. Kim, I. Kim, K.-H. ChoiT.-M. Lee. Experimental Qualification of the Process of Electrostatic Spray Deposition, Coat. 9(5) (2019) 294.

W. Mei, M. Lin, C. Chen, Y. Yan, L. Lin, Low-temperature synthesis and sunlight-catalytic performance of flower-like hierarchical graphene oxide/ZnO macrosphere, J. Nanopart Res. 20 (2018) 1 – 12.

R. Paul, R. Gayen, S. Biswas, S. V. Bhat, R. Bhunia, Enhanced UV detection by transparent graphene oxide/ZnO composite thin films, RSC Adv. 6(66) (2016) 61661 – 61672.

B. Tao, J. Yin, F. Miao, Y. Zang, High-performance humidity sensor based on GO/ZnO/plant cellulose film for respiratory monitoring, Ionics. 28(5) (2022) 2413 – 2421.

P. Songkeaw, B. Tunhoo, T. Thiwawong, K. Onlaor, Transparent write-once-read-many-times memory devices based on an ITO/EVA:rGO/ITO structure, J. Mater. Sci.: Mater. Electron. 29(20) (2018) 17517 – 17524.

N. T. Shimpi, Y. N. Rane, D. A. Shende, S. R. Gosavi, P. B. Ahirrao, Synthesis of rod-like ZnO nanostructure: Study of its physical properties and visible-light driven photocatalytic activity, Optik. 217(2020) 164916.

P. Songkeaw, K. Onlaor, T. Thiwawong, B. Tunhoo, Reduced graphene oxide thin film prepared by electrostatic spray deposition technique, Mater. Chem. Phys. 226(2019) 302 – 308.

L. G. Cançado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, A. C. Ferrari, Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies, Nano Lett. 11(8) (2011) 3190 – 3196.

C. V. V. Ramana, M. K. Moodely, V. Kannan, A. Maity, J. Jayaramudu, W. Clarke, Fabrication of stable low voltage organic bistable memory device, Sens. Actuators B Chem. 161(1) (2012) 684 – 688.

W. -D. Lin, C. -T. Liao, T. -C. Chang, S. -H. Chen, R. -J. Wu, Humidity sensing properties of novel graphene/TiO2 composites by sol–gel process, Sens. Actuators B Chem. 209 (2015) 555 – 561.

A. Subki, M. H. b. Mamat, M. Musa, M. Abdullah, I. S. Banu, N. Vasimalai, M. Ahmad, N. Nafarizal, A. Suriani, A. Mohamad, Effects of varying the amount of reduced graphene oxide loading on the humidity sensing performance of zinc oxide/reduced graphene oxide nanocomposites on cellulose filter paper, J. Alloys Compd. 926 (2022) 166728.

T. Thiwawong, K. Onlaor, B. Tunhoo, A Humidity Sensor Based on Silver Nanoparticles Thin Film Prepared by Electrostatic Spray Deposition Process, Adv. Mater. Sci. Eng. 2013(2013) 640428.

G. Korotcenkov, N. P. Simonenko, E. P. Simonenko, V. V. Sysoev, V. Brinzari, Based Humidity Sensors as Promising Flexible Devices, State of the Art, Part 2: Humidity-Sensor Performances. Nanomaterials. 13(8) (2023) 1381.

A. Tripathy, S. Pramanik, A. Manna, S. Bhuyan, N. F. Azrin Shah, Z. Radzi, N. A. Abu Osman, Design and Development for Capacitive Humidity Sensor Applications of Lead-Free Ca, Mg, Fe, Ti-Oxides-Based Electro-Ceramics with Improved Sensing Properties via Physisorption, Sens. 16(7) (2016) 1135.

N. Li, X. Chen, X. Chen, X. Ding, X. Zhao, Ultrahigh humidity sensitivity of graphene oxide combined with Ag nanoparticles, RSC Adv. 7(73) (2017) 45988 – 45996.

Downloads

Published

2023-09-01

How to Cite

Thiwawong, T., Maboonchauy, T., Onlaor, K. ., & Tunhoo, B. (2023). Preparation of graphene oxide composited zinc oxide films by electrostatic spray deposition for humidity sensors. Journal of Materials Science and Applied Energy, 12(3), 252232. https://doi.org/10.55674/jmsae.v12i3.252232