Oxygen plasma treatment WO3 nanorods for Improvement H2S gas sensing
DOI:
https://doi.org/10.55674/jmsae.v13i2.248329Keywords:
WO3 nanorods, Oxygen plasma, H2S sensor, GLAD techniqueAbstract
Herein, the oxygen (O2) plasma has been used to post-treat tungsten oxide (WO3) nanorods to improve the sensing performance of the H2S gas sensor. The reactive DC magnetron sputtering process with the glancing-angle deposition (GLAD) technique was used to prepare the WO3 nanorods. After deposition, the WO3 nanorod thin films were treated with O2 plasma at different treatment power from 100 – 200 W. The physical structure of as-deposition and treated WO3 nanorod thin films was investigated crystal structure and morphology by grazing incident X-ray diffraction (GIXRD), field-emission scanning electron microscope (FE-SEM), and high-resolution transmission electron microscope (HRTEM). The result indicated that the WO3 nanorod structure transformed to the monoclinic polycrystalline phase. FE-SEM and HRTEM observed slight changes in the shape of the WO3 nanorods. The H2S sensing properties were measured at 10 ppm at 150 – 350°C operating temperatures. At an operating temperature of 200 °C, the response to H2S of O2 plasma treated WO3 nanorods is increased by a factor of 5 – 15, and the maximum response to H2S is 15. The results showed that the O2 plasma treatment process improved the sensing response of the WO3 nanorods.
References
Y. Shen, T. Yamazaki, Z. Liu, D. Meng, T. Kikuta, N. Nakatani, Influence of Effective Surface Area on Gas Sensing Properties of WO3 Sputtered Thin Films, Thin Solid Films. 517 (2009) 2069 – 2072.
D. Deniz, D.J. Frankel, R.J. Lad, Nanostructured tungsten and tungsten trioxide films prepared by glancing angle deposition, Thin Solid Films. 518 (2010) 4095 – 4099.
M. Horprathuma, K. Limwicheana, A. Wisitsoraat, P. Eiamchai, K. Aiempanakit, P. Limnonthakul, N. Nuntawong, V. Pattantsetakul, A. Tuantranont, P. Chindaudom, NO2-sensing properties of WO3 nanorods prepared by glancing angle DC magnetron sputtering, Sens. Actuators B Chem. 176 (2013) 685 – 691.
Y.B. Li, Y. Bando, D. Golberg, K. Kurashima, WO3 Nanorods/Nanobelts Synthesized via Physical Vapor Deposition Process, Chem. Phys. Lett. 367 (2003) 214 – 218.
C. Oros, M. Horprathum, A. Wisitsoraat, T. Srichai-yaperk, B. Samransuksamer, S. Limwichean, P. Eiam -chai, D. Phokharatkul, N. Nuntawong, C. Chananon- nawathorn, V. Patthanasettakul, A. Klamchuen, J. Kaewkhao, A. Tuantranont, P. Chindaudom, Ultra-sensitive NO2 sensor based on vertically aligned SnO2 nanorods deposited by DC reactive magnetron sputtering with glancing angle deposition technique, Sens. Actuators B Chem. 223 (2016) 936 – 945.
H. Du, J. Wang, Y. Sun, P. Yao, X. Li, N. Yu, Investigation of gas sensing properties of SnO2/In2O3 composite hetero-nanofibers treated by oxygen plasma, Sens. Actuators B Chem. 206 (2015) 753 – 763.
Y. Hou, A.H. Jayatissa, Enhancement of gas sensor response of nanocrystalline zinc oxide for ammonia by plasma treatment, Appl. Surf. Sci. 309 (2014) 46 – 53.
A. Sharma, M. Tomar, V. Gupta, SnO2 thin film sensor with enhanced response for NO2 gas at lower temperatures, Sens. Actuators B Chem.156(2) (2011) 743 – 752.
H.J. Gwon, H.G. Moon, H.W. Jang, S.J. Yoon, K.S. Yoo, Sensitivity enhancement of nanostructured SnO2 gas sensors fabricated using the glancing angle deposition method, J. Nanosci. Nanotechnol. 13(4) (2013) 2740 – 2744.
C. Zhang, J. Wang, X. Geng, Tungsten oxide coatings deposited by plasma spray using powder and solution precursor for detection of nitrogen dioxide gas, J. Alloys Compd. 668 (2016) 128 – 136.
M.Z. Ahmada, A. Wisitsoraat, A.S. Zoolfakar, R.A. Kadir, W. Wlodarski, Investigation of RF sputtered tungsten trioxide nanorod thin film gas sensors prepared with a glancing angle deposition method toward reductive and oxidative analytes, Sens. Actuators B Chem.183 (2013) 364 – 371.
M. Horprathum, T. Srichaiyaperk, B. Samran-suksamer, A. Wisitsoraat, P. Eiamchai, S. Lim-wichean, C. Chananonnawathorn, K. Aiempanakit, N. Nuntawong, V. Patthanasettakul, C. Oros, S. Porntheeraphat, P. Songsiriritthigul, H. Nakajima, A. Tuantranont, P. Chindaudom, Ultrasensitive Hydrogen Sensor Based on Pt-Decorated WO3 Nanorods Prepared by Glancing-Angle dc Magnetron Sputtering, ACS Appl. Mater. Interfaces. 6 (2014) 22051 – 22060.
H.W. Kim, S.W. Choi, A. Katoch, S.S. Kim, Enhanced sensing performances of networked SnO2 nanowires by surface modification with atmospheric pressure Ar–O2 plasma, Sens. Actuators B Chem. 177 (2013) 654 – 658.
Y.H. Liang, W. Jun, Z. Biao, Z.B. Wen, L.L. Qin, Z.Y. Wu, Z. Cheng, X.X. Ling, Fabrication of single crystalline WO3 nano-belts based photoelectric gas sensor for detection of high concentration ethanol gas at room temperature, Sens. Actuator A Phys. 303 (2020) 11 – 18.
K. Khojier, S. Zolghadr, F. Teimoori, S. Goudarzi, Fabrication and characterization of porous WO3 thin film as a high accuracy cyclohexene sensor, Mater. Sci. Semicond. Process. 118 (2020) 115 – 220.
M. O’Brien, K. Lee, R. Morrish, N. C. Berner, N. McEvoy, C. A. Wolden, G. S. Duesberg, Plasma assisted synthesis of WS2 for gas sensing applications, Chem. Phys. Lett. 615 (2014) 6 – 10.
Y. Zhang, J. Li, G. An, X. He, Highly porous SnO2 fibers by electrospinning and oxygen plasma etching and its ethanol-sensing properties, Sens. Actuators B Chem. 44 (2010) 43 – 48.
B. Urasinska-Wojcik, T.A. Vincent, J.W. Gardner, H2S sensing properties of WO3 based gas sensor, Procedia Engineering. 168 (2016) 255 – 258.
M. Takácsa and A.E. Pap, Gas sensitivity of sol-gel prepared mesoporous WO3 thin film, Procedia Engineering. 168 (2016) 289 – 292.
T. Shujah, M. Ikram, A. R. Butt, M.K. Shahzad, K. Rashid, Q. Zafar, S. Ali, H2S Gas Sensor Based on WO3 Nanostructures Synthesized via Aerosol Assisted Chemical Vapor Deposition Technique, nanoscience and Nanotechnology Letters. 11 (2019) 1 – 10.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Journal of Materials Science and Applied Energy
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.