The effect of Mn-doping on dielectric properties of titanate nanowires

Authors

  • Pristanuch Masakul Department of Applied Physics, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima, 30000 Thailand
  • Prasit Thongbai Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
  • Santi Maensiri School of Physics, Institute of Science Suranaree University of Technology, Nakhon Ratchasima, 30000 Thailand

DOI:

https://doi.org/10.55674/jmsae.v11i3.245716

Keywords:

Titanate nanowires, Dielectric properties, Titanate nanowires; Dielectric properties; Mn-doped TNWs.

Abstract

Mn-doped titanate nanowires (TNWs) with system of MnxTi3-xO7 (Na0.96H1.04∙3.42H2O) (where x = 0, 0.05, 0.10, 0.20, and 0.30) were fabricated a hydrothermal route at 130 °C for 24 h. The products were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-vis spectroscopy. The nanowires were an average diameter of about 10–50 nm and an average range length of micrometer scales. The dielectric relaxation in the MnxTi3-xO7 (Na0.96H1.04∙3.42H2O) system was determined by LCR Meter in difference frequency (102–106 Hz) at various temperatures. The Mn-doped TNWs samples showed a giant dielectric exhibit with a dielectric constant of about 104 at 30 °C and 1 kHz. They all have a Debye-like relaxation based on the Maxwell-Wagner polarization. The dielectric constant of Mn-doped TNWs significantly increased with increasing doping levels.

References

G. Schileo, L. Luisman, A. Feteira, M. Deluca, K. Reichmann, Structure–property relationships in BaTiO3–BiFeO3–BiYbO3 ceramics, J. Eur. Ceram. Soc. 33(8) (2013) 1457 – 1468.

R. Yimnirun, S. Ananta, P. Laoratanakul, Dielectric and ferroelectric properties of lead magnesium niobate–lead zirconate titanate ceramics prepared by mixed-oxide method, J. Eur. Ceram. Soc. 25(13) (2005) 3235 – 3242.

M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases, J. Solid State Chem. 151(2) (2000) 323 – 325.

A.E. Smith, T.G. Calvarese, A.W. Sleight, M.A. Subramanian, An anion substitution route to low loss colossal dielectric CaCu3Ti4O12, J. Solid State Chem. 182(2) (2009) 409 – 411.

W. Hu, L. Li, W. Tong, G. Li, Water-titanate intercalated nanotubes: fabrication, polarization, and giant dielectric property, Phys. Chem. Chem. Phys. 12(39) (2010) 12638 – 12646.

K. Pristanuch, Y. Teerapon, T. Prasit, R. Saroj, Y. Rattikorn, M. Santi, Co-doped titanate nanotubes: Synthesis, characterization, and properties, Jpn. J. Appl. Phys. 53(6S) (2014) 06JG12.

P. Kasian, P. Thongbai, T. Yamwong, S. Rujirawat, R. Yimnirun, S. Maensiri, The DC Bias Voltage Effect and Non-Linear Dielectric Properties of Titanate Nanotubes, J. nanosci. nanotech. 15(11) (2015) 9197 – 9202.

W. Hu, L. Li, G. Li, J. Meng, W. Tong, Synthesis of Titanate-Based Nanotubes for One-Dimensionally Confined Electrical Properties, J. Phys. Chem. C. 113(39) (2009) 16996 – 17001.

H.-H. Ou, S.-L. Lo, Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application, Separ. Purif. Tech. 58(1) (2007) 179 – 191.

R. Yuan, B. Zhou, D. Hua, C. Shi, Enhanced photocatalytic degradation of humic acids using Al and Fe co-doped TiO2 nanotubes under UV/ozonation for drinking water purification, J. Hazard. Mater. 262 (2013) 527 – 538.

P. Szirmai, E. Horváth, B. Náfrádi, Z. Micković, R. Smajda, D.M. Djokić, K. Schenk, L. Forró, A. Magrez, Synthesis of Homogeneous Manganese-Doped Titanium Oxide Nanotubes from Titanate Precursors, J. Phys. Chem. C. 117(1) (2013) 697 – 702.

S.N.R. Inturi, T. Boningari, M. Suidan, P.G. Smirniotis, Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2, Appl. Catal. B Environ. 144 (2014)

– 342.

J. Zhu, W. Zheng, B. He, J. Zhang, M. Anpo, Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water, J. Mol. Catal. A Chem. 216(1) (2004) 35 – 43.

H.-C. Liang, X.-Z. Li, Effects of structure of anodic TiO2 nanotube arrays on photocatalytic activity for the degradation of 2,3-dichlorophenol in aqueous solution, J. Hazard. Mater. 162(2 – 3) (2009) 1415 – 1422.

Y.L. Pang, A.Z. Abdullah, Effect of low Fe3+ doping on characteristics, sonocatalytic activity and reusability of TiO2 nanotubes catalysts for removal of Rhodamine B from water, J. Hazard. Mater. 235–236 (2012) 326 – 335.

S.M. Sze, Physics of semiconductor devices, Wiley, New York 2004.

Z. Yuan, Y. Lin, J. Weaver, X. Chen, C. L. Chen, G. Subramanyam, J. C. Jiang, E. I. Meletis, Large dielectric tunability and microwave properties of Mn-doped (Ba,Sr)TiO3 thin films, Appl. Phys. Lett. 87 (2005), 152901.

J. Cai, Y.-H. Lin, B. Cheng, C.-W. Nan, Dielectric and nonlinear electrical behaviors observed in Mn-doped CaCu3Ti4O12 ceramic, Appl. Phys. Lett. 91 (2007), 252905.

J. Wu, C.W. Nan, Y. Lin, Y. Deng, Giant dielectric permittivity observed in Li and Ti doped NiO, Phys. Rev. Lett. 89 (2002) 30.

P. Thongbai, T. Yamwong, S. Maensiri, Correlation between giant dielectric response and electrical conductivity of CuO ceramic, Solid State Commun. 147 (2008) 385 – 387.

T. Putjuso, P. Manyum, R. Yimnirun, T. Yamwong, P. Thongbai, S. Maensiri, Giant dielectric behavior of solution-growth CuO ceramics subjected to dc bias voltage and uniaxial compressive stress, Solid State Sci. 13 (2011) 158 – 162.

D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, One-step internal barrier layer capacitor, Appl. Phys. Lett. 80 (2002) 2153.

P. Laokul, P. Thongbai, T. Yamwong, S. Maensiri, High Dielectric Permittivity and Maxwell-Wagner Polarization in Magnetic Ni0.5Cu0.3Zn0.2Fe2O4 Ceramics, J. Supercond. Nov. Magn. 25 (2012) 1195 – 1201.

P. Parjansri, K. Pengpat, G. Rujijanagul, T. Tunkasiri, U.S. Intatha, Eitssayeam Effects of Mn and Sr Doping on the Electrical Properties of Lead-Free 0.92BCZT-0.08BZT. Ceram. Ferroelectr. 458(1) (2014) 91 – 97.

W. Cai, C. Fu, J. Gao, X. Deng, Effect of Mn doping on the dielectric properties of BaZr0.2Ti0.8O3 ceramics, J. of Mater. Sci.: Mater. in Electro. 21(4) (2010) 317 – 325.

Downloads

Published

2022-08-31

How to Cite

Masakul, P., Thongbai, P., & Maensiri, S. (2022). The effect of Mn-doping on dielectric properties of titanate nanowires . Journal of Materials Science and Applied Energy, 11(3), 245716. https://doi.org/10.55674/jmsae.v11i3.245716