Synthesis of graphene from food and agricultural wastes in ubon ratchathani province, thailand


  • Makabodee Ruaysap Chemistry Program, Faculty of Scienced, Ubon Ratchathani Rajabhat University, Ubon Ratchathani, 34000 Thailand
  • Tontrakarn Pongphai Department of Chemitry, Faculty of Science, Kasetsart university, Bangkok, 10700 Thailand
  • Kanya Sirilapphokhin Chemistry Program, Faculty of Scienced, Ubon Ratchathani Rajabhat University, Ubon Ratchathani, 34000 Thailand
  • Prin Sirilapphokhin Chemistry Program, Faculty of Scienced, Ubon Ratchathani Rajabhat University, Ubon Ratchathani, 34000 Thailand
  • Udom Tipparach Department of Physics, Faculty of Science, Ubon Ratchathani University, 34190 Thailand



Graphene, Chemical vapor deposition, Food or agricultural waste


This research aims to investigate the possibility of synthesis of graphene from food and agricultural waste materials by Chemical Vapor Deposition (CVD). The starting materials including coconut shells and cricket legs were used to synthesize graphene. The synthesized graphene specimens were characterized by Ultraviolet-visible spectroscopy (UV-Vis), Powder X-ray diffraction (XRD) technique, Dispersive Raman spectroscopy, SEM, and TEM. Both resultant graphene samples: coconut shells and cricket legs showed graphene characteristics with the maximum wavelength of UV spectrum of synthesized graphene in ethanol at ~244 nm comparable with a standard graphene. The graphene characteristics of coconut shells and cricket legs were also confirmed by XRD showing (002) peak at 2θ≈26°. The SEM images showed lamella structure and wrinkle texture, demonstrating the multilayered microstructure and crumpled sheets and folded sheets. The TEM images also confirmed the layered sheets restacking structure with the different numbers of sheets and expressed that the graphene is a semitransparent material. Data obtained from Raman spectroscopy indicated that the defect of structure band or D-band at 1,340 – 1,380 cm–1, the graphite band or G-band at 1,500 – 1,600 cm–1 corresponding to sp2 of carbon atom, the graphene band or 2D-band at 2,500 – 2,600  cm–1 showing that the structure of graphene is a multilayer with small sizes and the overtone band of graphite or 2G - band at 3,100 – 3,200 cm–1. On the basis of the result, graphene was possibly synthesized from coconut shells and cricket legs.


B. Wang, F. Dong, M. Chen, J. Zhu, J. Tan, X. Fu, Y. Wang, S. Chen, Advance in recycling and utilization of agricultural wastes in China: based on environmental risk, crucial pathways, influencing factors, policy mechanism. The tenth international conference on waste management and technology (ICWMT), Procedia Environ. Sci. 31(2016) 12 – 17.

K. Abeliotis, K. Lasaridi, V. Costarelli, The implications of food waste generation on climate change: The case of Greece, Sustain. Prod. Consum. 3 (2015) 8 – 14.

F. Girotto, L. Alibardi, R. Cossu, Food waste generation and industrial uses: A review, J. Waste Manag. 45 (2015) 32 – 41.

G. Kibria, Food Waste Impacts on Climate Change & Water Resources.

profile/Golam_Kibria7/publication/316547640_Food_Waste_Impacts_on_Climate_Change_Water_Resources/links/5903e1c2aca272116d2fc686/Food-Waste-Impacts-on-Climate-Change-Water-Resources.pdf, 29 April 2017.

H.M. El-Mashhad, W.K.P. Loon, G. Zeeman, G.P.A. Bot, G. Lettinga, Reuse potential of agricultural wastes in semi-arid regions: Egypt as a case study, Rev. Environ. Sci. Biotechnol. 2 (2003) 53 – 66.

G. Ruan, Zh. Sun, Z. Peng, J.M. Tour, Growth of Graphene from Food, Insects, and Waste, ACS Nano. 5(9) (2011) 7601 – 7607.

E. Ruiz-Hitzky, M. Darder, F.M. Fernandes, E. Zatile, F.J. Palmares, P. Aranda, Supported Graphene from Natural Resources: Easy Preparation and Applications, Adv. Mater. 23(44) (2011) 1 – 6.

O. Akhavan, K. Bijanzad, A. Mirsepah, Synthesis of graphene from natural and industrial carbonaceous wastes. RSC. Adv. Chem. Adv. 4 (2014) 20441 – 20448.

A.K. Geim, K. Novoselov, The Rise of Graphene. Nat. Mater. 6(3) (2007) 183 – 91.

C.N.R. Rao, U. Maitra, H.S.S. Tamakrishna Matte, Graphene: Synthesis, Properties, and Phenomena. First Edition. Wiley-VCH Verlag GmbH & Co. KGaA, 2013, pp. 47.

A. Shekhawat, R.O. Ritchie, Toughness and Strength of nanocrystalline graphene. Nat. Commun. 7 (2016) 10546.

Z.H. Ni, H.M. Wang, J. Kasim, H.M. Fan, T. Yu, Y.H. Wu, Y.P. Feng, Z.X. Shen, Graphene Thickness Determination using reflection and Contrast Spectroscopy, Nano Lett. 7(9) (2007) 2758 – 2763.

E.P. Randviir, A.C.D. Brownson, E.C. Banks, A decade of grapheme research: production, applications and outlook, Mater. Today. 17(9) (2014) 426 – 432.

C. Soldano, A. Mahmood, E. Dujardin, Production, Properties and Potential of graphene. Carbon. 48 (2010) 2127 – 2150.

R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim, Fine Structure Constant Defines Visual Transparency of Graphene, Science. 320 (2008) 1308.

K.C. Sasaki, J. Jiang, R. Saito, S. Onari, Y. Tanaka, Theory of Superconductivity of Carbon Nanotubes and Graphene, J. Phys. Soc. Jpn. 76(30) (2007) 0337021 – 0337024.

K.M.F. Shahil, A.A. Balandin, Thermal properties of grapheme and multilayer grapheme: Applications in thermal interface materials, Solid State Commun. 152 (2012) 1331 – 1340.

K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid state Commun. 146 (2008) 351 – 355.

J. Wu, M. Agrawal, H.A. Becerril, L.Z. Bao, Y. Chen, Organic Light-Emitting Diodes on Solution-Processed Graphene Transparent Electrodes, ACS Nano. 4(1) (2010) 43 – 48.

Z. Li, Z. Zhou, G. Yun, K. Shi, X. Lv, B. Yang, High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites, Nanoscale Res. Lett. 8 (2013) 473.

J. Hou, Y. Shao, M.W. Ellis, R.B. Moore, B. Yi, Graphene-based electrochemical energy conversion and storage: fuel cells, supercapacitors and lithium ion batteries, Phys. Chem. Chem. Phys. 13 (2011) 15384 – 15402.

M. Khawaja, Synthesis and Fabrication of Graphene/Conducting Polymer/Metal Oxide Nanocomposite Materials for Supercapacitor Applications, University of South Florida, South Florida, 2015.

D. Wang, S.H. Vijapur, G.G. Botte, Coal Char Derived Few-Layer Graphene, nodes For Lithium Ion Batteries, Photonics. 1 (2014) 251 – 259.

S. Stankovich, D.A. Dikin, G.H.B. Dommett, K.M. Kholhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials, Nature. 442(7100) (2006) 282 – 286.

S. Gurunathan, J.W. Han, J.H. Park, E. Kim, Y.-J. Choi, D-N. Kwon, J-H. Kim, Reduced Graphene oxide-silver nanoparticle nanocomposite: a potential anticancer nanotherapy, Int. J. Nanomed. 110 (2016) 6257 – 6276.

J. Roy-Mayhew, I.A. Aksay, Graphene Materials and Their Use in Dye-Sensitized Solar Cells. ACS Chem. Rev. 114 (2014) 6323 − 6348.

W. Li, X. Geng, Y. Guo, J. Rong, Y. Gong, L. Wut, X. Zhang, P. Li, J. Xu, G. Cheng, M. Sun, L. Liu, Reduced Graphene Oxide Electrically Contacted Graphene Sensor for Highly Sensitive Nitric Oxide Detection, ACS Nano. 5(9) (2011) 6955 – 6961.

E. Hwang, H.M. Hwang, Y. Shin, Y. Yoon, H. Lee, J. Yang, S. Bak, H. Lee, Chemically modulated graphene quantum dot for tuning the photoluminescence as novel sensory probe, Sci. Rep. 6(39448) (2016) 1 – 10.

D.D. Nguyen, N.H. Tai, Y.L. Chueh, S.Y. Chen, Y.J. Chen, W.S. Kuo, T.W. Chou, C.S. Hsu, L.J. Chen, Synthesis of ethanol-soluble few-layer graphene sheets for flexible and transparent conducting composite films, Nanotechnology. 22 (2011) 1– 8.

H. Choi, S. Jung, J. Seo, D.W. Chang, L. Dai, J. Baek, Graphene for energy conversion and storage in fuel cells and supercapacitors, Nano Energy. 1 (2012) 534 – 551.

F. Schwierz, Graphene transistors, Nat. Nanotechnol. 5 (2010) 487 – 496.

A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhans, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition, Nano Lett. 9(1) (2009) 30 – 35.

X. Zhang, A.C. Coleman, N. Kasonis, W.R. Browne, B.J. Van Wees, B.L. Feringa, Dispersion of graphene in ethanol using a simple solvent exchange method, Chem. Commun. 46 (2010) 7539 – 7541.

C.H. Manoratne, S.R.D. Rosa, I.R.M. Kottegoda, XRD-HTA, UV Visible, FTIR and SEM Interpretation of Reduced Graphene Oxide Synthesized from High Purity Vein Graphite, Mater. Sci. Res. India. 14(1) (2017) 19 – 30.

X. Liu, M. Zheng, K. Xiao, Y. Xiao, Ch. He, H. Dong, Simple, green and high-yield production of single- or few-layer graphene by hydrothermal exfoliation of graphite, Nanoscale RSC. 6(9) 4598 – 45603.

F.T. Thema, M.J. Moloto, E.D. Dikio, N.N. Nyangiwe, L. Kotsedi, M. Maaza, M. Khenfoch, Synthesis and Characterization of Graphene Thin Films by Chemical Reduction of Exfoliated and Intercalated Graphite Oxide, J. Chem. 2013(2013) 1 – 6.

F.T. Johra, J. Lee, W. Jung, Facile and safe graphene preparation on solution based platform, J. Ind. Eng. Chem. 20 (2014) 2883 – 2887.

D. Pan, J. Zhang, Z. Li, M. Wu, Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots, Adv. Mater. 22 (2010) 734 –738.

K. Krishnamoothy, M. Veerapandian, G. Kim, S.J. Kim, A One Step Hydrothermal Approach for the Improved Synthesis of Graphene Nanosheets, Curr. Nanosci. 8 (2012) 934 – 938.

J. Peng, W. Gao, B.K. Gupta, Z. Liu, T.R. Romero-Aburto, L. Ge, L. Song, L.B. Alemay, X. Zhan,

G. Gao, S.A. Vithayathil, B.A. Kaippartettu, A.A. Marti, T. Hayashi, J.-J. Zhu, P.M. Ajayan, Graphene quantum dots derived from carbon fibers, Nano Lett. 12 (2012) 844 – 849.

L. Shi, K. Chen, R. Du, A. Bachmatiuk, M.H. Rummeli, M.K. Priydarshi, Y. Zhang, A. Manivannan, M. Liu, Direct Synthesis of Few-layer Graphene on NaCl Crystals, Small. 11(47) (2015) 6302 – 6308.

L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene, Phys. Rep. 473 (2009) 51 – 87.

C. Zhu, S. Yang, G. Wang, R. Mo, P. He, J. Sun, Z. Di, Z. Kang, N. Yuan, J. Ding, G. Ding, X. Xie, A new mild, clean and high-efficient method for preparation of graphene quantum dots without by-product, J. Mater. Chem. B. 3 (2015) 6871 – 6876.

Z. Xu, C. Gao, Graphene fiber a new trend in carbon fibers, Mater. Today. 18(9) (2015) 480 – 492.

A.B. Bourllinos, V. Georgakilas, R. Zboril, T.A. Steriotis, A.K. Stubos, Liquid-Phase Exfoliation of Graphite towards Solubilized Graphenes, Small. 16 (2009) 1840 – 1845.

R. Thomas, G. Mohan Rao, Synthesis of 3-dimensional porous graphene nanosheets using electron cyclotron resonance plasma enhanced chemical vapor deposition, RSC Adv. 5(2015) 84927 – 84935.

X. Peng, Y. Li, G. Zhang, F. Zhang, Z. Pan, Functionalization of Graphene with Nitrile Groups by Cycloaddition of Tetracyanoethylene Oxide, J. Nanomatter. 2013(2013) 1 – 5.




How to Cite

Ruaysap, M., Pongphai , T. ., Sirilapphokhin , K. ., Sirilapphokhin, P. ., & Tipparach, U. . (2022). Synthesis of graphene from food and agricultural wastes in ubon ratchathani province, thailand. Journal of Materials Science and Applied Energy, 11(2), 244465.