Accuracy Improvement for Localization in Outdoor Area Using Artificial Intelligence
DOI: 10.14416/j.ind.tech.2021.12.005
Keywords:
Localization, Artificial intelligence, Gradient descent method, Adam methodAbstract
In this article, we propose to apply two artificial intelligence methods, Gradient descent and Adam (Adaptive movement estimation), in order to increase the accuracy in localization for an outdoor area. Both methods use an iteration to minimize error. The difference between the two methods is that Adam applies moving average to reduce error while Gradient descent only uses partial derivative. We select a True-range multilateration method to estimate a coordinate of an interesting object. Simulation results show that both Gradient descent and Adam perform approximately the same. Both methods can reduce error from the conventional method by 10.17% for a 2,500 square meters area. For complexity, we observe that the Adam method requires much less complexity than Gradient descent dose in very small area size; however, Gradient descent is slightly less complex than Adam as the area size becomes bigger.
References
[2] S. Atipong, A study and design of object localization in wireless sensor network, The 39th Electrical Engineering Conference, Proceeding, 2016, 423-426.
[3] P. Dangkham, Indoor real time localization system with bluetooth low power, Journal of Industrial Technology, 2018, 13(1), 71 – 80. (in Thai)
[4] E.W. Lam and T.D.C. Little, Indoor 3D localization with low-cost LiFi components, 2019 Global LIFI Congress, Proceeding, 2019, 1-6.
[5] https://tupleblog.github.io/gradient-descent-part1/. (Accessed on 8 June 2021)
[6] D.P. Kingma and J.L. Ba, Adam: A method for stochastic optimization, International Conference on Learning Representation, Proceeding, 2014,1-15.
[7] T.S. Rappaport, Wireless communications: Upper saddle river, Prentice Hall, NJ, USA, 1996.
[8] D.M. Pozar, Microwave engineering, 2nd Ed., John Wiley & Sons, Inc., NY, USA, 1998.
[9] www.wikiwand.com/en/True-range_multilateration. (Accessed on 8 June 2021)
[10] Sutiyo, R.Hidayat, I. W. Mustika and Sunarno, The wide range of regression analysis in distance estimation system of the fingerprint-based outdoor wireless access point localization system, International Journal of Engineering and Technology, 2018, 7(4.40), 183 – 186.
[11] https://en.wikipedia.org/wiki/Monte_Carlo_method. (Accessed on 22 June 2021)
Downloads
Published
Issue
Section
License
Copyright (c) 2021 http://j.cit.kmutnb.ac.th/th/
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ผลงานวิจัยและบทความวิชาการที่ปรากฏในวารสารนี้ เป็นความคิดเห็นอิสระของผู้เขียน ผู้เขียนจะต้องเป็นผู้รับผิดชอบต่อผลทางกฎหมายใด ๆ ที่อาจจะเกิดขึ้นจากบทความนั้น กองบรรณาธิการและคณะจัดทำวารสารฯไม่จำเป็นต้องเห็นด้วยเสมอไป