A study of the thickness on the natural frequency in the free vibration of clamped - clamped steel plate

Main Article Content

จิรวัฒน์ วรุณโรจน์

Abstract

This research studies and analyzes the free vibration of clamped - clamped steel plate. Material property of the model was a carbon steel. The thickness of 1-meter width by 1-meter length plate was varied from 1 millimeter to 50 millimeters. The comparison between theoretical calculations and finite element were discussed for analysis of vibration natural frequency. The result found that the thickness of steel plate affected the vibration natural frequency. The vibration natural frequency from finite element method was approximately 896 larger than that from theoretical calculations. The number of elements influenced the vibration natural frequency and tolerances.

Article Details

How to Cite
วรุณโรจน์ จ. . (2013). A study of the thickness on the natural frequency in the free vibration of clamped - clamped steel plate. Frontiers in Engineering Innovation Research, 1, 61–67. Retrieved from https://ph01.tci-thaijo.org/index.php/jermutt/article/view/242092
Section
Research Articles

References

กนต์ธร ชำพิประศสน์, 2545. การสั่นทางกล.กรุงเทพฯ: สำนักพิมพ์เพียร์สัน เอ็ดดูเคชั่นอินโดไชน่า.

เกีชรดิฟา ตั้งใจจิต, 2548. การวิเคราะห์หาค่ำความถี่ธรรมชาติของคานยื่น. วิศวกรรมสาร ม.บ.;32(6):755-763.

ปราโมทย์ เตชะอำไพ, 2537. ไฟไนต์เอลิเมนต์ในงานวิศวกรรม. กรุงเทพฯ: สำนักพิมพ์จุฬาลงกรณ์มหาวิทยาลัย.

Ei Bikri, K., Benamar, R., Bennouna, M.M.,2006. Geometrically Non-Linear Free Vibration of Clamped - Clamped Beam with an Edge Crack. Computer and Structures; 84: 485-502.

Hyde, K., J.Y.Chang, C.Bacca, J.A.Wickert.,2001. Parameter Studies for Plane Stress in Plane Vibration of Rectangular Plates. Journal of Sound and Vibration;247 (3): 471-487.

Kobayashi.Y., 2005. Reduced - Order Non-linear Modal Equations of Plates Based on the Finite Element Method. [online] Available from: http://mech-me.eng.hokudai.ac.jp/~rd/labo/PDF/Reduce.pdf(24 June 2012).

Sundararajan.C., 2009. Structural Vibration Frequency Analysis of Beams. [online] Available from: URL: http://www.pdhengineer.com/Course%20Web/Structural%20Courses/structuralvibration_frequency_analysis.htm (11 June 2012).

Weaver, W.JR., Timoshenko, S.P, D.H. Young.,1990. Vibration Problems in Engineering.Fifth Edition. John Wiley & Sons, Inc.