Development of Smart Circuit Breakers to Prevent Fire from Short Circuit Current

Main Article Content

Suchart Khummanee
Aekkarach Artcharoen
Peerawat chanobrum


According to the survey results, the top three causes of fire in Thailand: 1) garbage and hay burning, 2) short-circuit current, and 3) misuse of fuel. In this paper, a prototype innovation for reducing the fire problem caused by short-circuit current has been developed, called Smart Breaker. It has outstanding qualities, including the ability to see (IR and DHT11 Sensor), smell (MQ-2) and sense (PZEM 400T) the cause of a fire. It can also report anomalies from fire detections to property owners' smartphones to let them know before the damage escalates. The smart breaker applies Internet of Things technology (IoT) to develop the prototype. The result obtained from testing the prototype fire detection device shows that the fire detection accuracy is accurate (x = 3.42) or 68.4 percent.


Download data is not yet available.

Article Details

How to Cite
Khummanee, S., Artcharoen, A., & chanobrum, P. (2021). Development of Smart Circuit Breakers to Prevent Fire from Short Circuit Current. Journal of Applied Informatics and Technology, 4(1), 48–61.


กรมป้องกันและบรรเทาสาธารณภัย. (2020). กรมป้องกันและบรรเทาสาธารณภัย. สืบค้น สิงหาคม 2564, สืบค้นจาก

การเกิดอัคคีภัย. (2016). สำนักป้องกันและบรรเทาสาธารณภัย. สืบค้น สิงหาคม 2564, สืบค้นจาก

การป้องกันและระงับอัคคีภัย. (2016). กองส่งเสริมเทคโนโลยีและความปลอดภัยในโรงงาน. สืบค้น ตุลาคม 2564, สืบค้นจาก

สมาคมส่งเสริมความปลอดภัยและอนามัยในการทำงาน (ประเทศไทย) ในพระราชูปถัมภ์ ฯ. (2020). กฎหมายความปลอดภัย. สืบค้น กันยายน 2564, สืบค้นจาก

Ahmed, T. M. (2018). Smart fire safety system in a Building. In 3rd IEEE International Conference on Recent Trends in Electronics, Information & Communication Technology (RTEICT) (pp. 37-40). https://doi.org10.1109/RTEICT42901.2018.9012548

Chen, K., Cheng, Y., Bai, H., Mou, C., & Zhang, Y. (2019). Research on image fire detection based on support vector machine. In 9th International Conference on Fire Science and Fire Protection Engineering (ICFSFPE) (pp. 1-7).

Chen, S., Wang, L.K., Li, W. & Chen, W. (2016). A low-cost R-type fire alarm system for old houses. In International Conference on Advanced Materials for Science and Engineering (ICAMSE) (pp. 51-54)

Duong, H.D., & Tinh, D.T. (2010). A novel computational approach for fire detection. In Second International Conference on Knowledge and Systems Engineering (pp. 9-13).

Hwang, J., Jun, S., Kim, S., Cha, D., Jeon, K., & Lee, J. (2010). Novel fire detection device for robotic fire fighting. In International Conference on Control, Automation and Systems (ICCAS) (pp. 96-100) https://doi.org10.1109/ICCAS.2010.5669964

iF WORLD DESIGN GUIDE. (2021). Smart fire-fighting drone. Retrieved 10 October 2021, Retrieved from

INTERESTING ENGINEERING. (2020). Bug Life: These 5 Robots Were Inspired by Insects. Retrieve 15 September 2021, Retrieved from

Islam, T., Rahman, H.A., & Syrus, M.A. (2015). Fire detection system with indoor localization using ZigBee based wireless sensor network. International Conference on Informatics, Electronics & Vision (ICIEV) (pp. 1-6).

Li, Z., & Li, J. (2015). Control system design of directional fire-fighting monitor based on video. In The 27th Chinese Control and Decision Conference (CCDC) (pp. 1753-1756).

Mittal, S., Rana, M.K., Bhardwaj, M., Mataray, M. & Mittal, S. (2018). CeaseFire: The fire fighting robot. In International Conference on Advances in Computing, Communication Control and Networking (ICACCCN) (pp. 1143-1146).

Sowah, R.A., Ofoli, A.R., Krakani, S.N., & Fiawoo, S.Y. (2017). Hardware design and web-based communication modules of a real-time multisensor fire detection and notification system using fuzzy logic. (2017). In IEEE Transactions on Industry Applications, 53(1), 559-566.

Zhang, D., et al. (2008). A new color-based segmentation method for forest fire from video image. in International Seminar on Future BioMedical Information Engineering (pp. 41-44).

Zhao, X., Cheng, L., Kuang, J. & Liu, J. (2020). Research on real-time detection of fire protection facilities based on improved YOLOv3 algorithm. In 39th Chinese Control Conference (CCC) (pp. 7193-7199)