In-mole-fraction of InGaAs Insertion Layers Effects on the Structural and Optical Properties of GaSb Quantum Dots Grown on (001) GaAs Substrate

Main Article Content

Suwit Kiravittaya
Kamonchanok Khoklang
Supachok Thainoi
Somsak Panyakeow
Somchai Ratanathammaphan

Abstract

GaSb quantum dots (QDs) have been grown by solid-source molecular beam epitaxy on a 4-monolayer (ML) InxGa1-xAs (x = 0.07, 0.15, 0.20, and 0.25) to investigate the effects of In-mole-fraction of InGaAs insertion layers on the structural and optical properties of the GaSb QDs. The density of grown GaSb QDs is approximately 1.2-2.8109 cm−2 on In-GaAs insertion layers which depends on the In-molefraction. Dot shape and size change substantially when In-mole-fraction of InGaAs insertion layers is varied. The uniformity of GaSb QDs improves when the indium content increases. The change in freestanding QD morphology is likely due to the modified strain at different values of indium compositions in InGaAs insertion layers. The effects of In-molefraction of InGaAs insertion layer on optical properties of the QDs are studied by photoluminescence (PL). PL results show the blueshift of the emission when the indium content in InGaAs insertion layer increases.

Article Details

How to Cite
[1]
S. Kiravittaya, K. Khoklang, S. Thainoi, S. Panyakeow, and S. Ratanathammaphan, “In-mole-fraction of InGaAs Insertion Layers Effects on the Structural and Optical Properties of GaSb Quantum Dots Grown on (001) GaAs Substrate”, ECTI-CIT Transactions, vol. 10, no. 2, pp. 129–135, Jan. 2017.
Section
Artificial Intelligence and Machine Learning (AI)

References

V. M. Ustinov, A. E. Zhukov, N. A. Maleev, A. R. Kovsh, S. S. Mikhrin, B. V. Volovik, Y. G. Musikhin, Y. M. Shernyakov, M. V. Maximov, A. F. Tsatsul’nikov, N. N. Ledentsov, Zh. I. Alferov, J. A. Lott, and D. Bimberg, “1.3 µm InAs/GaAs quantum dot lasers and VCSELs grown by molecular beam epitaxy,” J. Cryst. Growth, Vol. 227-228, pp.1155-1161, 2001.

J. Sabarinathan, P. Bhattacharya, P-C. Yu, and S. Krishna, “An electrically injected InAs/GaAs quantum-dot photonic crystal microcavity lightemitting diode,” Appl. Phys. Lett., Vol. 81, pp. 3876-3878, 2002.

K. Hirakawa, S.-W. Lee, Ph. Lelong, S. Fujimoto, K. Hirotani, and H. Sakaki, “Highsensitivity modulation-doped quantum dot infrared photodetectors,” Microelec. Eng., Vol. 63, pp. 185-192, 2002.

K. Tanabe, D. Guimard, D. Bordel, and Y. Arakawa, “High-efficiency InAs/GaAs quantum dot solar cells by metalorganic chemical vapor deposition,” Appl. Phys. Lett., Vol. 100, pp. 193905, 2012.

M. Hayne, R. J. Young, E. P. Smakman, T. Nowozin, P. Hoidgson, J. K. Garleff, P. Rambabu, P. M. Koenraad, A. Marent, L. Bonato, A. Schliwa, and D. Bimberg, “The structural, electronic and optical properties of GaSb/GaAs nanostructures for charge-based memory,” J. Phys. D: Appl. Phys., Vol. 46, pp. 264001, 2013.

C.-C. Tseng, W.-H. Lin, S.-Y. Wu, S.-H. Chen, and S.-Y. Lin, “The transition mechanisms of type-II GaSb/GaAs quantum-dot infrared lightemitting diodes,” J. Cryst. Growth, Vol. 323, pp. 466-469, 2011.

S. Kiravittaya, A. Rastelli, and O. G. Schmidt, “Advanced quantum dot configurations,” Rep. Prog. Phys., Vol. 72, pp. 046502, 2009. and references therein.

W.-H. Lin, C.-C. Tseng, S.-Y. Wu, W.-H. Wu, S.-Y. Lin, and M-C. Wu, “The influence of background As on GaSb/GaAs quantum dots and its application in infrared photodetectors.” Phys. Status Solidi C, Vol. 9, No.2, pp. 314-317, 2012.

A. Stinz, G. T. Liu, H. Li, L. F. Lester, and K. J. Malloy, “Low-threshold current density 1.3- m InAs quantum-dot lasers with the dots-in-awell (DWELL) structure,” IEEE Photon. Technol. Lett., Vol. 12, pp. 591-593, 2000.

R. S. Attaluri, S. Annamalai, K. T. Posani, A. Stinz, and S. Krishna, “Effects of Si doping on normal incidence InAs/In0.15Ga0.85As dots-inwell quantum dot infrared photodetectors,” J. Appl. Phys., Vol. 99, pp. 083105, 2006.

E. Placidi, F. Arciprete, V. Sessi, M. Fanfoni, F. Patella, and A. Balzarotti, “Step erosion during nucleation of InAs/GaAs(001) quantum dots,” Appl. Phys. Lett., Vol. 86, pp. 241913, 2005.

H. Eisele and M. D¨ahne, “Critical thickness of the 2-dimensional to 3-dimensional transition in GaSb/GaAs(001) quantum dot growth,” J. Cryst. Growth, Vol. 338, pp.103-106, 2012.

K. Khoklang, S. Kiravittaya, M. Kunrugsa, P. Prongjit, S. Thainoi, S. Ratanathammaphan, and S. Panyakeow, “Molecular beam epitaxial growth of GaSb quantum dots on (0 0 1) GaAs substrate with InGaAs insertion layer,” J. Cryst. Growth, Vol. 425, pp.291-294, 2015.

R. Songmuang, S. Kiravittaya, and O. G. Schmidt, “Shape evolution of InAs quantum dots during overgrowth,” J. Cryst. Growth, Vol. 249, pp. 416-421, 2003.

I. Vurgaftman, J. R. Meyer, and L. R. RamMohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys., Vol. 89, pp.5815-5875, 2001.

J. Tatebayashi, A. Khoshakhlagh, S. H. Huang, G. Balakrishnan, L. R. Dawson, D. L. Huffaker, D. A. Bussian, H. Htoon, and V. Klimov, “Lasing characteristics of GaSb/GaAs self-assembled quantum dots embedded in an InGaAs quantum well,” Appl. Phys. Lett., Vol. 90, pp. 261115, 2007.

N. N. Ledentsov, J. B¨ohrer, M. Beer, F. Heinrichsdorff, M. Grundmann, D. Bimberg, S. V. Ivanov, B. Ya Meltser, S. V. Shaposhnikov, I. N. Yassievich, N. N. Faleev, P. S. Kop’ev, and Zh. I. Alferov, “Radiative states in type-II GaSb/GaAs In-mole-fraction of InGaAs Insertion Layers Effects on the Structural and Optical Properties of GaSb Quantum Dots Grown on 135 quantum wells,” Phys. Rev. B, vol. 52, pp. 14058- 14066, 1995.

I. Farrer, M. J. Murphy, D. A. Ritchie, and A. J. Shields, “Room temperature 1.3µm emission from self-assembled GaSb/GaAs quantum dots,” J. Cryst. Growth, Vol. 251, No.1-4, pp. 771-776, 2003.

G. Balakrishnan, J. Tatebayashi, A. Khoshakhlangh, S. H. Huang, A. Jallipalli, L. R Dawson, and D.L. Huffaker, “III/V ratio based selectivity between strain StrankiKrastanov and strain-free GaSb quantum dots on GaAs,” Appl. Phys. Lett., Vol. 89, pp. 161104, 2006.

C.-K. Sun, G. Wang, J. E. Bowers, B. Brar, H.- R. Blank, H. Kroemer, and M. H. Pikunhn, “Optical investigation of the dynamic behavior of GaSb/GaAs quantum dots,” Appl. Phys. Lett., Vol. 68, pp.1543-1545, 1996.

E. H. C. Parker, The Technology and Physics of Molecular Beam Epitaxy, Sir John Cass School of Physical Science and Technology city of London Polytechnic London, England pp. 107-109, 1985.