All-Optical Logic and Arithmetic Operators Designed by Modified Add-Drop Filter

Main Article Content

Prapas Phongsanam
Preecha Yupapin

Abstract

Optical micro-ring resonators (MRRs) element can be used in many applications. This paper we propose a photonics circuit design based on optical tree architecture (OTA) for all-optical elements by using the modified add-drop filter for an all-optical arithmetic logic unit (ALU) aimed for computing applications system. All-optical 2x4 decoder, all-optical comparator, all-optical half adder, all-optical half subtractor, all-optical full adder, all-optical full subtractor and proposed new design all-optical 4x16 decoder were proposed. We have studied the nonlinear effect in the modified add-drop filter system, which is control by injected the nonlinear pulses on top as an input for generated all-optical logic and arithmetic operations simultaneously at the through and drop port of modified add-drop filter. The optical input and control field of the modified add-drop filter circuit can be formed by nonlinear dark and bright pluses. The obtained simulation results have shown that the nonlinear pulse generated by the nonlinear modified add-drop filter can control the output consistency, which is important when the interconnect between each circuit output parts are required. The advantages of the modified add-drop filter are low power, ultra-fast switching, tuneable and high security which is compact size and footprint. It is suitable for the next generation of all-optical small-scale device and all-optical computing system requirements.

Article Details

How to Cite
[1]
P. Phongsanam and P. Yupapin, “All-Optical Logic and Arithmetic Operators Designed by Modified Add-Drop Filter”, ECTI-CIT Transactions, vol. 12, no. 1, pp. 73–80, Jun. 2018.
Section
Artificial Intelligence and Machine Learning (AI)

References

[1] H. J. Caulfield, S. Dolev, “Why future supercomputing requires optics,” Nature Photonic., May 2010, vol.4, pp. 261-263 (2010).

[2] J. H. Kim, Y. T. Byun, Y. M. Jhon, S. Lee, D. H. Woo, S. H. Kim , “All-optical half adder using semiconductor optical amplifier based devices,” Opt. Commun., 218, pp. 345-349 (2003).

[3] J. Cong, X. Zhang and D. Huang, “A propose for two-input arbitrary Boolean logic gates using single semiconductor optical amplifier by picosecond pulse injection,” Opt. Exp., 17, pp. 7725-7730 (2009).

[4] S.H. Kim, J.H. Kim, B.G. Yu, Y.T. Byun, Y.M. Jeon, S.Lee, D.H. Woo, “All-optical NAND gate using cross-gain modulation in semiconductor optical amplifiers,” Electron. Lett., 41, pp. 1027-1028 (2005).

[5] J. Hun, Y. M. John, Y. T. Byun, S. Lee, D. H. Woo, S. H. Kim, “All-Optical XOR Gate Using Semiconductor Optical Amplifiers Without Additional Input Beam,” IEEE Photon. Technol. Lett., 14, pp. 1436-1438 (2002).

[6] T. Kawazoe, K. Kobayashi, K. Akahane, M. Naruse, N. Yamamoto, M. Ohtsu, “Demonstration of nanophotonic NOT gate using near-field optically coupled quantum dot,” Appl. Phys. B., 84, pp. 243-246 (2006).

[7] S. Ma, Z. Chen, H. Sun, and K. Dutta, “High speed all optical logic gates based on quantum dot semiconductor optical amplifiers,” Opt. Exp., 18, pp. 6417-6422 (2010).

[8] A. J. Poustie, K. J. Blow, R. J. Manning, A. E. Kelly, “All-optical pseudorandom number generator”, Opt. Commun. 159, pp. 208-214 (1999).

[9] J. N. Roy, D. K. Gayen, “Integrated all-optical logic and arithemetic operation with the help of a TOAD-based interferometer device-alternative approach,” Appl. Opt., 46, pp. 5304-5310 (2007).

[10] L. Zhang, R. Ji, L. Jia, L. Yang, P. Zhou, Y. Tiam, P. Chen, Y. Lu, “Demonstration of directed XOR/XNOR logic gates using two cascaded microring resonators,” Opt. Lett., 35(10), pp. 1620-1622 (2010).

[11] Y. Tian, Lei Zhang, R. Ji, L. Yang, P. Zhou, J. Ding, H. Chen, W. Zhu, Y. Lu, Q. Fang L. Jia, M. Yu, “Demonstration of a directed optical decoder using two cascaded microring resonators,” Opt. Lett., 36(17), pp. 3314-3316 (2011).

[12] D. K. Gayen , J. N. Roy, “All-optical arithmetic unit with the help of terahertz-optical-asymmetric-demultiplexer-based tree architecture”, Appl. Opt., 47, pp. 933-943 (2008).

[13] J. N. Roya., A. K. Maitib, D. Samantac, S. Mukhopadhyayc, “Tree-net architecture for integrated all-optical arithmetic operations and data comparison scheme with optical nonlinear material,” Opt. Switch. and Netw., 4, pp. 231-237 (2007).

[14] A. Poustie, R. Manning, A. Kelly, K. Blow, “All-optical binary counter”, Opt. Exp., 6, 69-74 (2000).

[15] N. Pahari, D. N.Das, .S. Mukhopadhyay , “All-optical method for the addition of binary data by nonlinear materials,” Appl. Opt., 43(33), pp. 6147-6150 (2004).

[16] A.J. Poustie, K.J. Blow, A.E. Kelly, R.J. Manning, “All-optical full adder with bit-differential delay,” Opt. Commun., 168, pp. 89-93 (1999).

[17] G. Falkovich, I. Kolokolov, V. Lebedev, V. Mezentsev, S. Turitsyn, “Non-Gaussian error probability in optical soliton transmission”, Physica D 195, pp. 1-28 (2004).

[18] P. Phongsanam, S. Mitatha, C. Teeka, P.P. Yupapin, “All optical half adder/subtractor using dark-bright soliton conversion control,” Microwave and Optical Technology Letters vol. 53(7), pp. 1541-1544 (2011).

[19] D. G. Rabus, M. Hamacher, H. Heidrich, “Resonance Frequency Tuning of a Double Ring Resonator in GaInAsP/InP: Experiment and Simulation”, Appl. Phys., vol. 41, pp. 1186-1189 (2002).

[20] T. Phatharaworamet, C. Teeka, R. Jomtarak, S. Mitatha, and P.P. Yupapin, “Random binary code generation using dark-bright soli-ton conversion control within a PANDA ring resonator,” J. Lightwave. Technol. 28(19), pp. 2804-2809 (2010).

[21] K. Luangxysana,M. Yoshida, N. Komine, P. Phongsanam, S. Mitatha, P.P. Yupapin, “High capacity frequency comb generated by a PANDA ring resonator,” ECTI-CON 2012.

[22] K. Okamoto, “Fundamental of Optical waveguides”, Academic Press, New York, 2000.

[23] Q. Xu, D. Fattal, R. G. Beausoleil, “Silicon microring resonators with 1.5-μm radius,” Opt. Exp., 16, pp. 4309-4315 (2008).

[24] S. Mitatha, N. Chaiyasoonthorn, P. P. Yupapin, “Dark-bright optical solitons conversion via an optical add/drop filter,” Microw. and Opt. Technol. Lett., 51, pp. 2104-2107 (2009).

[25] S. Mukhopadhyay, “An optical conversion system: From binary to decimal and decimal to binary,” Opt. Commun., 76. pp. 309-312 (1990).

[26] J. Wang, Q. Sun, and J. Sun, “All-optical 40 Gbit/s CSRZ-DPSK logic XOR gate and format conversion using four-wave mixing,” Opt. Express, 17(15), pp. 12555-12563 (2009).

[27] T. A. Ibrahim, W. Cao, Y. Kim, J. Li, J. Goldhar, P. T. Ho, and C. H. Lee, “All-optical switching in a laterally coupled microring resonator by carrier injection,” IEEE Photon. Technol. Lett. 15(1), pp. 36–38 (2003).

[28] Y. Kokubun, Y. Hatakeyama, M. Ogata, S. Suzuki, and N. Zaizen, “Fabrication technologies for vertically coupled microring resonator with multilevel crossing busline and ultracompact-ring radius,” IEEE J. Sel. Top. Quantum Electron., 11(1), pp. 4-10 (2005).

[29] A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides”, Electorn. Lett., vol. 36, no. 4. pp. 321-322, February 2000.