Optimized IoT-Based Multimodal Fusion for Early Forest Fire Detection and Prediction

Main Article Content

Abdi Muhaimin
Edriyansyah
Wahyat
Yuda Irawan
Refni Wahyuni

Abstract

Forest and land fires are recurring ecological disasters that pose serious threats to environmental sustainability, particularly in vulnerable regions like Indonesia. Conventional fire detection methods using only visual or single-sensor data often suffer from low accuracy in poor lighting, thin smoke, or extreme weather. This study proposes an IoT-based multimodal system that combines visual imagery and real-time meteorological sensor data. Fire detection was conducted using the YOLOv11 model, trained for 50 epochs with the SGD optimizer. The model achieved a precision of 87.9%, recall of 79.7%, mAP@0.5 of 87.7%, and mAP@0.5:0.95 of 53.7%. Detected images are further classified using a hybrid ViT-GRU model, which achieves 99.97% accuracy by capturing spatial and temporal fire patterns. We performed fire detection using an LSTM model optimized with Optuna and SMOTE, yielding 92.66% accuracy and an AUC of 1.00. The decision-level fusion approach integrates visual and sensor outputs to improve the accuracy and contextual relevance of the nal prediction. We deployed the system in a real-time Streamlit dashboard connected to cloud-based data acquisition. Results show that this multimodal approach significantly improves the reliability of early re detection and risk prediction.

Article Details

How to Cite
[1]
A. Muhaimin, Edriyansyah, Wahyat, Y. Irawan, and R. Wahyuni, “Optimized IoT-Based Multimodal Fusion for Early Forest Fire Detection and Prediction”, ECTI-CIT Transactions, vol. 19, no. 4, pp. 569–582, Sep. 2025.
Section
Research Article

References

Y. Irawan et al., “Realtime Monitoring and Analysis Based on Cloud Computing Internet of Things (CC-IoT) Technology in Detecting Forest and Land Fires in Riau Province,” Ilk. J. Ilm., vol. 15, no. 3, pp. 445–454, 2023.

B. Setya, R. A. Nurhidayatullah, M. B. Hewen and K. Kusrini, “Comparative Analysis Of Rainfall Value Prediction In Semarang Using Linear And K-Nearest Neighbor Algorithms,” in 2023 5th International Conference on Cybernetics and Intelligent System (ICORIS), pp. 1–5, 2023.

A. L. R. Putri, B. Surarso and T. U. SRRM, “MICE Implementation to Handle Missing Values in Rain Potential Prediction Using Support Vector Machine Algorithm,” JTAM (Jurnal Teor. dan Apl. Mat., vol. 7, no. 4, p. 1167, 2023.

Y. Irawan, R. Wahyuni, M. Muhardi, H. Fonda, M. L. Hamzah and R. Muzawi, “Real Time System Monitoring and Analysis-Based Internet of Things (IoT) Technology in Measuring Outdoor Air Quality,” Int. J. Interact. Mob. Technol., vol. 15, no. 10, pp. 224–240, 2021.

R. Wahyuni, Herianto, Ikhtiyaruddin, and Y. Irawan, “IoT-Based Pulse Oximetry Design as Early Detection of Covid-19 Symptoms,” Int. J. Interact. Mob. Technol., vol. 17, no. 3, pp. 177–187, 2023.

Y. Irawan, E. Sabna, A. F. Azim, R. Wahyuni, N. Belarbi and M. M. Josephine, “Automatic Chili Plant Watering Based on Internet of Things (Iot),” J. Appl. Eng. Technol. Sci., vol. 3, no. 2, pp. 77–83, 2022.

Y. Irawan, A. W. Novrianto and H. Sallam, “Cigarette Smoke Detection and Cleaner Based on Internet of Things (Iot) Using Arduino Microcontroller and Mq-2 Sensor,” J. Appl. Eng. Technol. Sci., vol. 2, no. 2, pp. 85–93, 2021.

A. R. Abidin, Y. Irawan and Y. Devis, “Smart Trash Bin for Management of Garbage Problem in Society,” J. Appl. Eng. Technol. Sci., vol. 4, no. 1, pp. 202–208, 2022.

S. Purwanti, A. Febriani, M. Mardeni and Y. Irawan, “Temperature Monitoring System for Egg Incubators Using Raspberry Pi3 Based on Internet of Things (IoT),” J. Robot. Control, vol. 2, no. 5, 2021.

R. M. Sari, E. Sabna, R. Wahyuni and Y. Irawan, “Implementation of open and close a housing gate portal using RFID card,” J. Robot. Control, vol. 2, no. 5, pp. 363–367, Sep. 2021.

A. N. Mabdeh, A. Al-Fugara, K. M. Khedher, M. Mabdeh, A. R. Al-Shabeeb and R. AlAdamat, “Forest Fire Susceptibility Assessment and Mapping Using Support Vector Regression and Adaptive Neuro-Fuzzy Inference SystemBased Evolutionary Algorithms,” Sustainability, vol. 14, no. 15, 2022.

A. S. Nur, Y. J. Kim, J. H. Lee and C.-W. Lee, “Spatial Prediction of Wildfire Susceptibility Using Hybrid Machine Learning Models Based on Support Vector Regression in Sydney, Australia,” Remote Sens., vol. 15, no. 3, 2023.

A`. Nebot and F. Mugica, “Forest Fire Forecasting Using Fuzzy Logic Models,” Forests, vol. 12, no. 8, 2021.

L. Soualah, A. Bouzekri, and H. Chenchouni, “Hoping the best, expecting the worst: Forecasting forest fire risk in Algeria using fuzzy logic and GIS,” Trees, For. People, vol. 17, p. 100614, 2024.

S. Madkar, D. Y. Sakhare, K. A. Phutane, A. P. Haral, K. B. Nikam and S. Tharunyha, “Video Based Forest Fire and Smoke Detection Using YoLo and CNN,” 3rd Int. Conf. Power, Energy, Control Transm. Syst. ICPECTS 2022 Proc., pp. 1–5, 2022.

A. Bayegizova et al., “Fire detection using deep learning methods,” Int. J. Electr. Comput. Eng., vol. 14, no. 1, p. 547, 2024.

S. N. Saydirasulovich, M. Mukhiddinov, O. Djuraev, A. Abdusalomov and Y. I. Cho, “An Improved Wildfire Smoke Detection Based on YOLOv8 and UAV Images,” Sensors (Basel), vol. 23, no. 20, 2023.

A. Sharma, V. Kumar and L. Longchamps, “Comparative performance of YOLOv8, YOLOv9, YOLOv10, YOLOv11 and Faster R-CNN models for detection of multiple weed species,” Smart Agric. Technol., vol. 9, p. 100648, 2024.

M. A. S¸im¸sek and A. Sertba¸s, “Automatic Detection Of Meniscus Tears From Knee Mri Images Using Deep Learning: Yolo V8, V9, And V10 Series,” Kahramanmara¸s S¨ut¸c¨uImam Universitesi M¨uhendislik Bilim. Derg., vol. 28, no. 1, pp. 292–308, 2025.

P. Mehta et al., “Benchmarking YOLO Variants for Enhanced Blood Cell Detection,” Int. J. Imaging Syst. Technol., vol. 35, no. 1, p. e70037, 2025.

S. N. R, Rajakrishnamoorthi, S. G, V. S, S. M. A. R and C. H. Madhavan, “Smoke Sentry: Employing YOLO-based Deep Learning for Sophisticated Real-Time Smoking (Cigarette smoking) Detection in Surveillance Networks,” in 2024 3rd International Conference on Automation, Computing and Renewable Systems (ICACRS), pp. 892–898, 2024.

C. Catargiu, N. Cleju and I. B. Ciocoiu, “A Comparative Performance Evaluation of YOLOType Detectors on a New Open Fire and Smoke Dataset,” Sensors, vol. 24, no. 17, 2024.

F. Akhmedov, R. Nasimov and A. Abdusalomov, “Dehazing Algorithm Integration with YOLOv10 for Ship Fire Detection,” Fire, vol. 7, no. 9, pp. 1–20, 2024.

A. Morchid, Z. Oughannou, R. El Alami, H. Qjidaa, M. O. Jamil, and H. M. Khalid, “Integrated internet of things (IoT) solutions for early fire detection in smart agriculture,” Results Eng., vol. 24, p. 103392, 2024.

I. Pacal, B. Ozdemir, J. Zeynalov, H. Gasimov and N. Pacal, “A novel CNN-ViT-based deep learning model for early skin cancer diagnosis,” Biomed. Signal Process. Control, vol. 104, p. 107627, 2025.

Y. Pan, Y. Li, T. Yao, C. W. Ngo and T. Mei, “Stream-ViT: Learning Streamlined Convolutions in Vision Transformer,” IEEE Trans. Multimed., vol. PP, pp. 1–11, 2025.

G. Wang, D. Bai, H. Lin, H. Zhou and J. Qian, “FireViTNet: A hybrid model integrating ViT and CNNs for forest fire segmentation,” Comput. Electron. Agric., vol. 218, p. 108722, 2024.

T. Chen et al., “A vision transformer machine learning model for COVID-19 diagnosis using chest X-ray images,” Healthc. Anal., vol. 5, p. 100332, 2024.

J. Li and Y. Zhang, “Regressive vision transformer for dog cardiomegaly assessment,” Sci. Rep., vol. 14, no. 1, p. 1539, 2024.

M. Shahid, H.-C. Wang, Y.-Y. Chen, and K.L. Hua, “Hybrid CNN-ViT architecture to exploit spatio-temporal feature for fire recognition trained through transfer learning,” Multimed. Tools Appl., vol. 84, no. 8, pp. 4703–4732, 2025.

S. S, Rajashree, S. C. M, A. S. M, M. K and S. K. S, “Hybrid CNN-GRU based Machine Vision Multimodal Deep Learning Model for Glaucoma Detection in Retinal Fundus Image,” in 2025 International Conference on Artificial Intelligence and Data Engineering (AIDE), pp. 913–919, 2025.

U. S. Kumar et al., “Fusion of MobileNet and GRU: Enhancing Remote Sensing Applications for Sustainable Agriculture and Food Security,” Remote Sens. Earth Syst. Sci., vol. 8, no. 1, pp. 118–131, 2025.

M. J. Zobair, M. A. Rahman, M. S. Hossain, N. Khan, M. A. A. K. Akash and M. H. I. Bijoy, “A Hybrid ViT-GRU Model for Breast Cancer Detection: Addressing Class Imbalance Challenges,” in 2025 International Conference on Electrical, Computer and Communication Engineering (ECCE), 2025.

Y. Lee and H. Kim, “Comparative Analysis of YOLO Series ( from V1 to V11 ) and Their Application in Computer Vision,” J. Semicond. Disp. Technol., vol. 23, no. 4, pp. 190–198, 2024.

A. Ghahremani, S. D. Adams, M. Norton, S. Y. Khoo and A. Z. Kouzani, “Detecting Defects in Solar Panels Using the YOLO v10 and v11 Algorithms,” Electron., vol. 14, no. 2, 2025.

S. Wang, Y. Chen, Z. Cui, L. Lin and Y. Zong, “Diabetes Risk Analysis based on Machine Learning LASSO Regression Model,” J. Theory Pract. Eng. Sci., vol. 4, no. 1, pp. 58–64, 2024.

V. A. Boateng and B. Yang, “A Global Modeling Pruning Ensemble Stacking With Deep Learning and Neural Network Meta-Learner for Passenger Train Delay Prediction,” IEEE Access, vol. 11, no. May, pp. 62605–62615, 2023.

H. Fonda, Y. Irawan, R. Melyanti, R. Wahyuni and A. Muhaimin, “A Comprehensive Stacking Ensemble Approach for Stress Level Classification in Higher Education,” J. Appl. Data Sci., vol. 5, no. 4, pp. 1701–1714, 2024.

A. Lubis, Y. Irawan, Junadhi and S. Defit, “Leveraging K-Nearest Neighbors with SMOTE and Boosting Techniques for Data Imbalance and Accuracy Improvement,” J. Appl. Data Sci., vol. 5, no. 4, pp. 1625–1638, 2024.

M. K. Anam et al., “Sara Detection on Social Media Using Deep Learning Algorithm Development,” J. Appl. Eng. Technol. Sci., vol. 6, no. 1, pp. 225–237, Dec. 2024.

Herianto, B. Kurniawan, Z. H. Hartomi, Y. Irawan, and M. K. Anam, “Machine Learning Algorithm Optimization using Stacking Technique for Graduation Prediction,” J. Appl. Data Sci., vol. 5, no. 3, pp. 1272–1285, 2024.

A. Febriani, R. Wahyuni, Y. Irawan, and R. Melyanti, “Improved Hybrid Machine and Deep Learning Model for Optimization of Smart Egg Incubator,” J. Appl. Data Sci., vol. 5, no. 3, pp. 1052–1068, 2024.

D. Setiawan, R. N. Putri, I. Fitri, A. N. Hidayanto, Y. Irawan, and N. Hohashi, “Improved Deep Learning Model for Prediction of Dermatitis in Infants,” J. Appl. Data Sci., vol. 6, no. 2, pp. 871–884, 2025.

H. Chen, J. Cui, Y. Zhang, and Y. Zhang, “VIT and Bi-LSTM for Micro-Expressions Recognition,” in 2022 IEEE 5th International Conference on Information Systems and Computer Aided Education (ICISCAE), pp. 946–951, 2022.

A. B. Nassif, I. Shahin, M. Bader, A. Ahmed, and N. Werghi, “ViT-LSTM synergy: a multifeature approach for speaker identification and mask detection,” Neural Comput. Appl., vol. 36, no. 35, pp. 22569–22586, 2024.

A. R. Borah, A. A. Hameed, H. P. Thethi, J. L. Prasanna, A. Sangeetha and D. D. Gautam, “ViT and RNN for Temporal and Spatial Analysis in Video Sequences,” in 2025 International Conference on Intelligent Control, Computing and Communications (IC3), pp. 651–656, 2025.

N. Zhou et al., “ViT-UNet: A Vision Transformer Based UNet Model for Coastal Wetland Classification Based on High Spatial Resolution Imagery,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 17, pp. 19575–19587, 2024.

M. S. Wasif, M. P. Miah, M. S. Hossain, M. J. F. Alenazi and M. Atiquzzaman, “CNN-ViT synergy: An efficient Android malware detection approach through deep learning,” Comput. Electr. Eng., vol. 123, p. 110039, 2025.