Optimized transfer learning for polyp detection
Main Article Content
Abstract
Early diagnosis of colorectal cancer focuses on detecting polyps in the colon as early as possible so that patients can have the best chances for success- ful treatment. This research presents the optimized parameters for polyp detection using a deep learning technique. Polyp and non-polyp images are trained on the InceptionResnetV2 model by the Faster Region Con- volutional Neural Networks (Faster R-CNN) framework to identify polyps within the colon images. The proposed method revealed more remarkable results than previous works, precision: 92.9 %, recall: 82.3%, F1-Measure: 87.3%, and F2-Measure: 54.6% on public ETIS-LARIB data set. This detection technique can reduce the chances of missing polyps during a pro- longed clinical inspection and can improve the chances of detecting multiple polyps in colon images.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
International Agency for Research on Cancer, “New Global Cancer Data,” accessed January 22, 2021, https://www.uicc.org/news/globocan-2020-new-global-cancer-data
National Institute of Diabetes and Digestive and Kidney Diseases, “Flexible Sigmoidoscopy,” accessed May 22, 2018, https://www.niddk.nih.gov/health-information/diagnostic-tests/flexible-sigmoidoscopy
N. N. Baxter, M. A. Goldwasser, L. F. Paszat, R. Saskin, D. R. Urbach and L. Rabeneck, "Association of colonoscopy and death from colorectal cancer," Annals of Internal Medicine,Vol. 150 (1), pp.1–8, 2009.
G. Arkady, "Wireless capsule endoscopy," Sensor Review, Vol. 23, pp.128–133, 2003.
S. A. Karkanis, D. K. Iakovidis, D. E. Maroulis, D. A. Karras and M. Tzivras, M, “Computer-aided tumor detection in endoscopic video using color wavelet features,” IEEE transactions on information technology in biomedicine, Vol. 7, pp.141–152, 2003.
S. Ameling, S. Wirth, D. Paulus, G. Lacey, and F.Vilarino, “Texture-based polyp detection in colonoscopy,” In Bildverarbeitung Für Die Medizin, Springer, pp.346–350, 2009.
A. Karargyris and N. Bourbakis, “Detection of small bowel polyps and ulcers in wireless capsule endoscopy videos,” IEEE Transactions on biomedical engineering, Vol. 58, pp.2777–2786, 2011
B. Li and M.Q.H. Meng, “Automatic polyp detection for wireless capsule endoscopy images,” Expert Systems with Applications, Vol. 39, pp.10952–10958, 2021a.
S. Park, M. Lee and N. Kwak, Polyp detection in colonoscopy videos using deeply-learned hierarchical features, Seoul National University, 2015.
N. Tajbakhsh, S. R. Gurudu and J. Liang, “Automatic polyp detection in colonoscopy videos using an ensemble of convolutional neural networks,” Proceeding of 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp.79-83, 2015.
J. Bernal, N. Tajkbaksh, F. J. Sánchez, B. J. Matuszewski, H. Chen, L. Yu, Q. Angermann, O. Romain, B. Rustad, I. Balasingham and K. Pogorelov, “Comparative validation of polyp detection methods in video colonoscopy: results from the MICCAI 2015 endoscopic vision challenge,” IEEE transactions on medical imaging, Vol. 36(6), pp.1231–1249, 2017.
J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, D. Gil, C. Rodríguez and F. Vilariño, “WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians,” Computerized Medical Imaging and Graphics, Vol. 43, pp.99–111, 2015.
A. Krizhevsky, I. Sutskever and G. E. Hinton, “Imagenet classification with deep convolutional neural networks,” Communications of the ACM, Vol. 60(6), pp.84-90, 2017.
P. Brandao, E. Mazomenos, G. Ciuti, R. Caliò, F. Bianchi, A. Menciassi, P. Dario, A. Koulaouzidis, A. Arezzo and D. Stoyanov, “Fully convolutional neural networks for polyp segmentation in colonoscopy,” Proceeding of Medical Imaging 2017, Vol. 10134, pp.101-107, 2017.
K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” arXiv:1409.1556, 2014.
J. Silva, A. Histace, O. Romain, X. Dray and B. Granado, “Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer,” International Journal of Computer Assisted Radiology and Surgery, Vol.9, pp.283–293, 2014.
N. Tajbakhsh, S. R. Gurudu and J. Liang, “Automated polyp detection in colonoscopy videos using shape and context information,” IEEE transactions on medical imaging, Vol.35, pp.630–644, 2016.
Y. Shin, H. A. Qadir, L. Aabakken, J. Bergsland and I. Balasingham, “Automatic colon polyp detection using region based deep cnn and post learning approaches,” IEEE Access, Vol.6, pp.40950-40962, 2018.
R. Girshick, J. Donahue, T. Darrell and J. Malik,“Rich feature hierarchies for accurate object detection and semantic segmentation,” Proceedings of the IEEE conference on computer vision and pattern recognition, pp.580-587, 2014.
W. Liu, D. Anguelov, D. Erhan, C, Szegedy, S. Reed, C. Y. Fu and A. C. Berg, “Ssd: Single shot multibox detector,” Proceedings of the European conference on computer vision, pp. 21–37, 2016.
R. Girshick, “Fast r-cnn,” Proceeding of the IEEE international conference on computer vision, pp.1440-1448, 2015.
S. Ren, K. He, R. Girshick and J. Sun, “Faster r-cnn: Towards real-time object detection with region proposal networks,” In Advances in neural information processing systems, pp.91-99, 2015.
J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You only look once: Unified, real-time object detection,” Proceedings of the IEEE conference on computer vision and pattern recognition, pp.779-788, 2016.
K. He, X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition,” Proceedings of the IEEE conference on computer vision and pattern recognition, pp.770-778, 2016.
M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen, “Mobilenetv2: Inverted residuals and linear bottlenecks,” Proceedings of the IEEE conference on computer vision and pattern recognition, pp.4510-4520, 2018.
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke and A. Rabinovich, “Going deeper with convolutions,” Proceedings of the IEEE conference on computer vision and pattern recognition, pp.1-9, 2015.
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” Proceedings of the IEEE conference on computer vision and pattern recognition, pp.2818-2826, 2016.
C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-resnet and the impact of residual connections on learning,” Proceedings of the Thirty-first AAAI conference on artificial intelligence, 2017.
M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for convolutional neural networks,” Proceedings of the International conference on machine learning, pp.6105-6114, 2019.
G. Huang, Z. Liu, L. Van Der Maaten and K. Q. Weinberger, “Densely connected convolutional networks,” Proceedings of the IEEE conference on computer vision and pattern recognition, pp.4700-4708, 2017.
K. Pogorelov, K. R. Randel, C. Griwodz, S. L. Eskeland, T. de Lange, D. Johansen, C. Spampinato, D. T. Dang-Nguyen, M. Lux, P. T. Schmidt and M. Riegler, “Kvasir: A multi-class image dataset for computer aided gastrointestinal disease detection,” Proceedings of the 8th ACM on Multimedia Systems Conference, pp.164–169, 2017.
D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv:1412.6980, 2014.
S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv:1609.04747, 2016.
J. Kang and J. Gwak, “Ensemble of instance segmentation models for polyp segmentation in colonoscopy images,” IEEE Access, Vol.7, pp.26440-26447, 2019.
S. Sornapudi, F. Meng and S. Yi, “Region-based automated localization of colonoscopy and wireless capsule endoscopy polyps,” Applied Sciences, Vol.9(12), pp.2404-2418, 2019.
H. A. Qadir, Y. Shin, J. Solhusvik, J. Bergsland, L. Aabakken and I. Balasingham, “Polyp detection and segmentation using mask R-CNN: Does a deeper feature extractor CNN always perform better?,” Proceedings of the 13th International Symposium on Medical Information and Communication Technology (ISMICT), pp.1-6, 2019.
X. Jia, X. Mai, Y. Cui, Y. Yuan, X. Xing, H. Seo, L. Xing and M. Q. H., Meng, “Automatic polyp recognition in colonoscopy images using deep learning and two-stage pyramidal feature prediction,” IEEE Transactions on Automation Science and Engineering, Vol.17(3), pp.1570-1584, 2020.
H. A. Qadir, Y. Shin, J. Solhusvik, J. Bergsland,
L. Aabakken and I. Balasingham, “Toward real-time polyp detection using fully CNNs for 2D Gaussian shapes prediction,” Medical Image Analysis, Vol.68, pp.101897-101906, 2021.