Grain Crushing under Pile Tip Explored by Acoustic Emission
Main Article Content
Abstract
Recent practice in design of pile foundations under vertical load relies significantly on either a classic plasticity framework or empiricism. Despite efforts to explore the real pile behavior mainly in 1960s and 1970s, research interest has decreased in the recent times. Accordingly, much is not known about the group pile behavior that is more complicated than that of a single pile. One of the possible reasons for this poor situation is the lack of novel research methodology. In this regard, the authors chose the behavior of both a single pile and group piles subjected to vertical load, and carried out model tests using several new research tools. One important finding was the significant vertical compression of sand under the pile tips which was accompanied by crushing of sand grains. To further investigate the process of grain crushing, the acoustic emission (AE) method was introduced so that “when” and “where” of grain crushing might be identified through the interpretation of micro noise that was generated by crushing. Being different from early studies on AE in geotechnical materials, the present study paid attention to the frequency components of the noise and found that noise by grain sliding is of lower frequency while that by crushing exhibits higher frequency. This finding enabled the authors to interpret more accurately the recorded noise, and the timing and location of grain crush during pile penetration were identified. These findings were verified against the independent graphic interpretation of grain movement (PIV). Consequently, a close correlation between AE intensity and yielding of sand were identified. It is important that grain crushing occurs slightly below the elevation of the pile tip and sand immediately below the tip is significantly compressed but less prone to crushing.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2019 Association of Geotechnical Societies in Southeast Asia (AGSSEA) - Southeast Asian Geotechnical Society (SEAGS).