Seismic Analysis of Reinforced Soil Wall Considering Oblique Pull-out of Reinforcements: A Review
Main Article Content
Abstract
Several methods are available for stability analysis of reinforced soil structures. However, most of these methods mainly concentrated on the horizontal pull-out of the reinforcement in spite of the evidences available that show the failure surface of reinforced soil structure will always intersect reinforcement layers diagonally due to the failure kinematics. It will cause oblique/transverse deformation to reinforcements across the failure surface. In the present paper, state-of-the-art review of earthquake stability analysis of reinforced soil-wall by employing the oblique/transverse pull of reinforcements is discussed. Formulations that are developed in various studies to determine the mobilization of diagonal pullout resistance of reinforcements, the amount of drag force triggered in the reinforcement sheets due to instability in the structure and the factor of safety against pull-out are presented. A comparative study is also carried out between existing models and methods that are used in determining the seismic stability of reinforced soil structure subjected to diagonal pullout of soil reinforcements. The comparative study shows the effect of various models and methods on the factor of safety against reinforced soil-wall stability and the influence of different parameters i.e., horizontal seismic acceleration, internal friction angle of soil, interface friction angle of soil and reinforcement, relative subgrade stiffness factor etc. Depending on the model used in analyses, the computed factor of safety may vary significantly.
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright © 2019 Association of Geotechnical Societies in Southeast Asia (AGSSEA) - Southeast Asian Geotechnical Society (SEAGS).