Extending the Legacy: A Journey into the Emerging World of Fractional Quantum Calculus
Keywords:
Fractional quantum calculus, Fractional difference calculus, Fractional 𝑞-difference calculus, Fractional Hahn difference calculus, Symmetric Hahn difference, (𝑝,𝑞)-calculus, Non-local phenomena, Memory effects, Discrete systemsAbstract
This paper provides a comprehensive and rigorous exposition of Fractional Quantum Calculus (FQC), a sophisticated mathematical framework that systematically extends classical integer-order quantum calculus to the realm of arbitrary fractional orders. We delineate the construction of five interconnected yet distinct types of fractional difference operators: the foundational Fractional Difference Calculus (FDC), Fractional -Difference Calculus (FqDC), and Fractional Hahn Difference Calculus (FHDC), complemented by the advanced generalizations Fractional Symmetric Hahn Difference Calculus (FSHC) and Fractional -Calculus (FpqC). The unifying principle undergirding all five frameworks involves the non-integer generalization of iterated summation, leading to the derivation of both Riemann-Liouville and Caputo operators. Fractional quantum calculus furnishes an indispensable analytical instrument for modeling intricate physical and biological phenomena characterized by inherent non-locality, memory-dependent behavior, and discrete dynamical evolution, capabilities that transcend the limitations of conventional integer-order mathematical models (see [1],[2]).
References
Agarwal, R. P. (1969). Certain fractional 𝑞-integral and 𝑞-derivatives. Mathematical Proceedings of the Cambridge Philosophical Society, 66, 365-370.
Al-Salam, W. A. (1966). Some fractional 𝑞-integrals and 𝑞-derivatives. Proceedings of the Edinburgh Mathematical Society, 15(2), 135-140.
Anastassiou, G. A. (2009). Discrete fractional calculus and inequalities. Electronic Journal of Qualitative Theory of Differential Equations, 2009(1), 1-12.
Brikshavana, T., & Sitthiwirattham, T. (2017). Existence results for fractional Hahn difference and fractional Hahn integral boundary value problems. Discrete Dynamics in Nature and Society, 2017(1), 7895186.
Brikshavana, T., & Sitthiwirattham, T. (2017). On fractional Hahn calculus with the delta operators. Advances in Difference Equations, 2017(1), 354.
Brikshavana, T., & Sitthiwirattham, T. (2018). On fractional Hahn integrodifference equations with nonlocal integral boundary conditions. Journal of Mathematical Analysis and Applications, 460(2), 573-594.
Čermák, J., & Nechvatál, L. (2010). On 𝑞,ℎ-analogue of fractional calculus. Journal of Nonlinear Mathematical Physics, 17(1), 51-68.
Ernst, T. (2012). A Comprehensive Treatment of q-Calculus. Birkhäuser.
Etemad, S., Ntouyas, S. K., Stamova, I., & Tariboon, J. (2024). On solutions of two post-quantum fractional generalized sequential Navier problems: an application on the elastic beam. Fractal and Fractional, 8(4), 236.
Ferreira, R. A. C. (2011). Discrete fractional calculus and fractional difference equations. Journal of Approximation Theory, 164(3), 304-320.
Ferreira, R. A. C., & Torres, D. F. M. (2011). Fractional ℎ-difference equations arising from the calculus of variations. Applicable Analysis and Discrete Mathematics, 5(1), 110-121.
Gray, H. L., & Zhang, N. F. (1988). On a new definition of the fractional difference. Journal of Applied Probability, 25(Supplement), 53-73.
Kac, V., & Cheung, P. (2002). Quantum Calculus. Springer-Verlag.
Leibniz, G. W. (1695). Letter to G. F. A. de L'Hôpital, October 15, 1695.
L'Hôpital, G. F. A. de. (1695). Letter to G. W. Leibniz, September 30, 1695.
Miller, K. S., & Ross, B. (1989). Fractional difference calculus. In Proceedings of the International Symposium on Univalent Functions, Fractional Calculus, and Their Applications, Nihon University, Koriyama, Japan. pp. 139-152.
Nasiruzzaman, M., Mukheimer, A., & Mursaleen, M. (2019). Some Opial-typein tegral inequalities via (p,q)-calculus. Journal of Inequalities and Applications, 2019(1), 295.
Neang, P., Nonlaopon, K., Tariboon, J., Ntouyas, S. K., & Agarwal, P. (2021). Some trapezoid and midpoint type inequalities via fractional (p, q)-calculus. Advances in Difference Equations, 2021(1), 333.
Patanarapeelert, N., & Sitthiwirattham, T. (2018). On nonlocal Robin boundary value problems for Riemann–Liouville fractional Hahn integrodifference equation. Boundary Value Problems, 2018(1), 46.
Patanarapeelert, N., & Sitthiwirattham, T. (2019). On Fractional Symmetric Hahn Calculus. Mathematics, 7(10), 873.
Patanarapeelert, N., & Sitthiwirattham, T. (2019). On Fractional Symmetric Hahn Calculus. Mathematics, 7(10), 873.
Sitthiwirattham, T. (2020). Quantum calculus (Calculus without limit) with the filling of the missing spaces of utilization. Journal of Science Innovation for Sustainable Development, 2(1), 1–9.
Sitthiwirattham, T. (2021). Knowledge for the future: Fractional quantum calculus (Calculus without limit). Journal of Science Innovation for Sustainable Development, 3(1), 1–9.
Soontharanon, J., & Sitthiwirattham, T. (2020). On fractional (𝑝,𝑞)-calculus. Advances in Difference Equations, 2020(1), 35.
Soontharanon, J., & Sitthiwirattham, T. (2021). Bernstein and Opial-type inequalities for Riemann-Liouville fractional (𝑝,𝑞)-calculus operators. Advances in Difference Equations, 2021(1), 131.
Soontharanon, J., & Sitthiwirattham, T. (2022). On sequential fractional Caputo (p, q)-integrodifference equations via three-point fractional Riemann-Liouville (p, q)-difference boundary condition. AIMS Mathematics, 7(1), 704-722.
Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2025 Journal of Applied Science and Emerging Technology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.