Geopolymer as a Viable Alternative for Moisture Control and Partial Discharge Mitigation in Buildings of Electrical Substations

Authors

Keywords:

Electrical substations, Geopolymer concrete, Humidity control, Ordinary Portland cement, Partial discharge

Abstract

Partial discharges (PDs) accelerate insulation degradation and threaten the reliability and life-span of high-voltage substations. While PD mitigation studies largely focus on insulation materials and operating conditions, the role of substation building materials in controlling internal humidity remains underexplored. Conventional ordinary Portland cement (OPC) concrete is prone to moisture ingress, resulting in elevated humidity levels that intensify PD activity. This study review materials–environment–PD relationship by examining the properties of geopolymer concrete as an alternative to OPC. The conceptual proposal highlights the permeability, moisture resistance, and sustainability of geopolymer materials, and their potential to stabilise internal substation environments and mitigate humidity-driven PD risks are discussed. The study positions geopolymer concrete as a viable construction material for improving the long-term reliability of electrical substation infrastructure.

References

Ab-Ghani, S., Abu-Bakar, N., Chairul, I. S., Khiar, M. S., & Ab-Aziz, N. H. (2019). Effects of moisture content and temperature on the dielectric strength of transformer insulating oil. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 63(1), 107–116.

Adekunle, O. O., Omorinsola, A. A., Nurudeen, A. A., & Yesiru, A. A. (2017). A study into the use of recycle iron and steel slag as an alternative aggregate in concrete production. Civil and Environmental Research, 9(2), 22–31.

Adnan, & Anas, M. (2025). Geopolymer concrete as a sustainable alternative to OPC. Journal of Umm Al-Qura University for Engineering and Architecture. https://doi.org/10.1007/s43995-025-00155-8

Ali, K. J., Hasan, G. T., & Ahmed, A. M. (2017). Investigate and analyze the electromagnetic field levels inside an electric power substations. Tikrit Journal of Engineering Sciences, 24(3), 10–14. https://doi.org/10.25130/tjes.24.3.02

Al-Jiboory, Y. M., & Al-Hazaa, S. H. (2022). Assessment of altawseea ordinary portland cement northern Iraq: Mineralogy, microstructure, and hydration. Iraqi Geological Journal, 55(2C), 198–208. https://doi.org/10.46717/igj.55.2C.15ms-2022-08-28

Alvarado, A., Baykara, H., Riofrio, A., Cornejo, M., & Merchan-Merchan, W. (2024). Preparation, characterization, electrical conductivity, and life cycle assessment of carbon nanofibers-reinforced Ecuadorian natural zeolite-based geopolymer composites. Heliyon, 10(6). https://doi.org/10.1016/j.heliyon.2024.e28079

Aredes, F. G., Campos, T. M., Machado, J. P., Sakane, K. K., Thim, G. P., & Brunelli, D. D. (2015). Effect of cure temperature on the formation of metakaolinite-based geopolymer. Ceramics International, 41(6), 7302–7311. http://dx.doi.org/10.1016/j.ceramint.2015.02.022

Ashveenkumar, P., Preethi, M., & Prashanth, P. (2022). Mechanical properties of geopolymer concrete with varying cement content using flyash and ground granulated blast furnace slag. International Journal of Engineering, Science and Technology, 13(4), 57–64. https://doi.org/10.4314/ijest.v13i4.7

Awang, N. A., Suhaini, F. A., Arief, Y. Z., Ahmad, M. H., Ahmad, N. A., Muhamad, N. A., & Adzis, Z. (2017). Effect of humidity on partial discharge characteristics of epoxy/boron nitride nanocomposites. International Journal of Electrical and Computer Engineering, 7(3), 1562–1567. https://doi.org/10.11591/ijece.v7i3.pp1562-1567

Ayub, T., Khan, S. U., & Memon, F. A. (2014). Mechanical characteristics of hardened concrete with different mineral admixtures: A review. (B. Lin, & J. R. Rabunal, Eds.) Scientific World Journal, 2014, 1–15. https://doi.org/10.1155/2014/875082

Aziz, I. H., Abdullah, M. M., Abd-Razak, R., Yahya, Z., Salleh, M. A., Chaiprapa, J., Jamaludin, L. (2023). Mechanical performance, microstructure, and porosity evolution of fly ash geopolymer after ten years of curing age. Materials, 16(3), 1096. https://doi.org/10.3390/ma16031096

Bayliss, C. R., & Hardy, B. J. (2007). Transmission and Distribution Electrical Engineering, 3rd ed. England: Elsevier Limited.

Bouchenafa, C., Hamzaoui, R., Florence, C., & Mansoutre, S. (2022). Cement and clinker production by indirect mechanosynthesis process. Construction Materials, 2(4), 201–216. https://doi.org/ 10.3390/constrmater2040014

Byrne, T. (2013). Humidity Effects in Substations. Capenhurst, Chester: EA Technology Limited, Capenhurst Technology Park. Retrieved from http://www.eatechnology.com

Castillo, H., Collado, H., Droguett, T., Sánchez, S., Vesely, M., Garrido, P., & Palma, S. (2021). Factors affecting the compressive strength of geopolymers: A review. Minerals, 11(12), 1317. https://doi.org/ 10.3390/min11121317

Chen, C., Shenoy, S., Sasaki, K., Zhang, H., & Tian, Q. (2024). Influence of liquid-to-solid ratios on properties and microstructure of coal gasification slag-based one-part geopolymer. Case Studies in Construction Materials, 20, 1–13. https://doi.org/10.1016/j. cscm.2024.e02924

Dai, S., Wang, W., An, S., & Yuan, L. (2022). Mechanical properties and microstructural characterization of metakaolin geopolymers based on orthogonal tests. Materials(Basel), 15(8), 2957.

https://doi.org/10.3390/ma15082957

Doğan-Sağlamtimur, N., Bilgil, A., Ertürk, S., Bozkurt, V., Süzgeç, E., Akan, A. G., Hebda, M. (2022). Eco-geopolymers: Physico-mechanical features, radiation absorption properties, and mathematical model. Polymers, 14(2), 262. https://doi.org/10.3390/polym14020262

Durastanti, C., & Moretti, L. (2020). Environmental impacts of cement production: A statistical analysis. Applied Sciences, 10(22), 8212. https://doi.org/10.3390/app10228212

Ekaputri, J. J., Junaedi, S., & Wijaya. (2017). Effect of Curing Temperature and Fiber on Metakaolin-based Geopolymer. International Conference on Sustainable Civil Engineering Structures and Construction Materials (SCESCM 2016). 171, pp. 572-583. Bali, Indonesia: Elsevier Procedia, Curran Associates, Inc. https://doi.org/10.1016/j.proeng.2017.01.376

Ezenwora, J. A., Oyedum, O. D., & Ocheni, A. U. U. (2009). Design, construction and characterization of domestic live-wire detector device. Natural and Applied Sciences Journal, 10(1), 63–69.

Guan, X., Luo, W., Liu, S., Hernandez, G. A., Do, H., & Li, B. (2023). Ultra-high early strength fly ash-based geopolymer paste cured by microwave radiation. Developments in the Built Environment, 14, 1–11. https://doi.org/10.1016/j.dibe.2023.100139

Hassan, W., Hussain, G. A., Mahmood, F., Amin, S., & Lehtonen, M. (2020). Effects of environmental factors on partial discharge activity and estimation of insulation lifetime in electrical machines. IEEE Access, 8, 108491–108502. https://doi.org/10.1109/ACCESS.2020.2998373

Hotek, P., Fiala, L., Lin, W., Chang, Y., & Cerny, R. (2023). Alkali-activated metashale mortar with waste cementitious aggregate: Material characterisation. Material Process, 13(1), 41. https://doi.org/10. 3390/materproc2023013041

Inti, S., Sharma, M., & Tandon, V. (2016). Ground Granulated Blast Furnace Slag (GGBS) and Rice Husk Ash (RHA) Uses in the Production of Geopolymer Concrete. In Proceedings of Geo-Chicago 2016: Geotechnics for Sustainable Energy. GSP 270, pp. 621–632. Illinois, Chicago, USA: Geo-Chicago.

Issa, T. M., Sitarz, M., Mróz, K., & Rózycki, M. (2023). Geopolymers-Base Materials and Properties of Green Structural Materials. In T. Tracz, T. Zdeb, & I. Hager (Ed.), 10th MATBUD02023 Scientific-Technical Conference “Building Materials Engineering and Innovative Sustainable Materials, pp. 1–7. Cracow, Poland.

Janošević, N., Đorić-Veljković, S., Topličić-Ćurčić, G., & Karamarković, J. (2018). Properties of geopolymers. Series: Architecture and Civil Engineering, 16(1), 45–56. https://doi.org/10.2298/FUACE16122 6004J

Ji, Y., Giangrande, P., & Zhao, W. (2024). Effect of environmental and operating conditions on partial discharge activity in electrical machine insulation: A comprehensive review. Energies, 17(16), 3980. https://doi.org/10.3390/en17163980

Ji, Y., Giangrande, P., Zhao, W., Madonna, V., Zhang, H., Li, J., & Galea, M. (2023). Investigation on combined effect of humidity-temperature on partial discharge through dielectric performance evaluation. IET Science, Measurement & Technology, 17(1), 37–46. https://doi.org/10.1049/smt2.12128

Jiao, K., Li, J., Zhang, J., & Sun, P. (2025). Application of novel polymer materials for anti fouling control of landfills: A comprehensive durability evaluation. Journal of Environmental Management, 376, 124354. https://doi.org/10.1016/j.jenvman.2025.124354

Kanagaraj, B., Anand, N., Raj, S., & Lubloy, E. (2024). Advancements and environmental considerations in Portland cement-based radiation shielding concrete: materials, properties, and applications in nuclear power plants– Review. Cleaner Engineering and Technology, 19, 1–15. https://doi.org/10.1016/j.clet.2024.100733

Kyrchenko, O. (2024). Health benefits of air pollution reduction: Evidence from economic show down in India. Economic and Human Biology, 55(101437). https://doi.org/10.1016/j.ehb.2024.101437

Li, L., Song, J., Lei, Z., Kang, A., Wang, Z., Men, R., & Ma, Y. (2021). Effect of ambient humidity and thermal aging on Nomex insulation in mining dry-type transformer. High Voltage, 6(1), 71–81. https://doi.org/10.1049/hve.2019.0293

Liu, J., Li, X., Lu, Y., & Bai, X. (2020). Effects of Na/Al ratio on mechanical properties and microstructure of red mud-coal metakaolin geopolymer. Construction and Building Materials, 263, 120653. https://doi.org/10.1016/j.conbuildmat.2020.120653

Liu, J., Shi, X., Zhang, G., & Li, L. (2023). Study the mechanical properties of geopolymer under different curing conditions. Minerals, 13(5), 690. https://doi.org/10.3390/min13050690

Lopes, A., Lopes, S., & Pinto, I. (2023, November). Influence of curing temperature on the strength of a metakaolin-based geopolymer. Materials, 16(23), 7460. https://doi.org/10.3390/ma16237460

Matsimbe, J., Dinka, M., & Olukanni, D. (2022). Geopolymer: A systematic review of methodologies. Materials , 15(19), 6852. https://doi. org/10.3390/ma15196852

Melo, J. V., Lira, G. R., Costa, E. G., Vilar, P. B., Andrade, F. L., Marotti, A. C., Santos Júnior, A. C. (2024). Separation and classification of partial discharge sources in substations. Energies, 17(15), 3804. https://doi.org/10.3390/en17153804

Mohsen, A., Kohail, M., Abadel, A. A., Alharbi, Y. R., Nehdi, M. L., & Ramadan, M. (2022). Correlation between porous structure analysis, mechanical efficiency and gamma-ray attenuation power for hydrothermally treated slag-glass waste-based geopolymer. Case Studies in Construction Materials, 17, e01505. https://doi.org/10. 1016/j.cscm.2022.e01505

National Ready Mixed concrete Association (NRMCA). (2021). Concrete in Practice (CIP 16): Flexural Strength of Concrete. Retrieved January23, 2024, from National Ready Mixed concrete Association (NRMCA): https://www.nrmca.org/wp-content/uploads/2021/01/16pr.pdf

Ngui, F. M., Muhammed, N., Mutunga, F. M., Marangu, J. M., & Kinoti, I. K. (2022). A review on selected durability parameters on performance of geopolymers containing industrial by-products, agro-wastes and natural pozzolan. Journal of Sustainable Construction Materials and Technologies, 7(4), 375–400. https://doi.org/10.47481/ jscmt.1190244

Nurruddin, M. F., Haruna, S., Mohammed, B. S., & Galal, I. (2018). Methods of curing geopolymer concrete: A review. International Journal of Advanced and Applied Sciences, 5(1), 31–36. https://doi.org/ 10.21833/ijaas.2018.01.005

Olarinoye, I. O., Kolo, M. T., Fawole, I. W., & Salihu, S. O. (2025). Characterising metal slag-based geopolymer concrete for radiation shielding application. Confluence University Journal of Science and Technology, 2(1), 1–10. https://doi.org/10.5455/CUJOSTECH.2504

Oni, A. A., Fawole, W. I., & Ocheni, A. U. U. (2017). Assessment of radiological health hazards from measured activity concentrations in soil samples around Gbose quarry Omu-aran, Kwara State. Journal of the Nigerian Association of Mathematical Physics, 41, 167–172.

Palod, R., Deo, S. V., & Ramtekkar, G. D. (2017). Review and suggestions on use of steel slag in concrete and its potential use as cementitious component combined with GGBS. International Journal of Civil Engineering and Technology, 8(4), 1026–1035.

Pham, T., Nguyen, N., Nguyen, T., Nguyen, T., & Pham, T. (2023). Effects of superplasticizer and water-binder ratio on mechanical properties of one-part alkali-activated geopolymer concrete. Buildings, 13(7),

Pinlova, B., Sudheshwar, A., Vogel, K., Malinverno, N., Hischier, R., & Som, C. (2024). What can we learn about the climate impact of polylactic acid from a review and meta-analysis of lifecycle assessment studies. Sustainability Production and Consumption, 48, 396–406. https://doi.org/10.1016/j.spc.2024.05.021

Ruviaro, A. S., Santana, H. A., Lima, G. T., Barraza, M. T., Silvestro, L., Gleize, P. J., & Pelisser, F. (2023). Valorization of oat husk ash in metakaolin-based geopolymer pastes. Construction and Building Materials, 367, 130341. https://doi.org/10.1016/j.conbuildmat .2023.130341

Selvarajan, M., Bohra, A., Nath, K. R., Rao, M. V., Tiwary, N. K., & Saxena, A. (2017). Water Footprint Assessment of Cement Plants. 15th International Seminar on Cement and Building Materials. Manakshaw Centre, New Delhi, India.

Sharmin, S., Sarker, P. K., Biswas, W. K. & Abousnina, R. M. (2024). Characterization of waste clay brick powder and its effect on the mechanical properties and microstructure of geopolymer mortar, Construction and Building Materials, 412, 134848. https://doi.org/10.1016/j.conbuildmat.2023.134848

Singh, A., Bhadauria, S. S., Thakare, A. A., Kumar, A., Mudgal, M., & Chaudhary, S. (2024). Durability assessment of mechanochemically activated geopolymer concrete with a low molarity alkali solution. Case Studies in Construction Materials, 20, e02715. https://doi.org/10.1016/j.cscm.2023.e02715

Singh, S., Aswath, M. U., & Ranganath, R. V. (2018). Effect of mechanical activation of red mud on the strength of geopolymer binder. Construction and Building Materials, 177, 91–101. https://doi.org/10.1016/j.conbuildmat.2018.05.096

Suleiman, S. S. (2024). Land Degradation caused by Solid Mineral Mining and its Impact on Rural Livelihoods in Eastern Kogi State [Doctoral’s thesis]. Bayero University, Kano, Nigeria.

Szilágyi, R., Molinié, P., Kirkpatrick, M. J., Odic, E., Galli, G., & Dessante, P. (2023). Role of temperature in partial discharge inception voltage at triple junctions. IEEE Transactions on Dielectrics and Electrical Insulation, 04231278f. https://doi.org/10.1109/TDEI.2023.3315686

Tschentscher, M., Graber, D., & Franck, M. C. (2020). Influence of humidity on conduction processes in gas-insulated devices. High Voltage, 5(2), 143–150. https://doi.org/10.1049/hve.2019.0315

Walkley, B., Ke, X., Hussein, O., & Provis, J. L. (2021). Thermodynamic properties of sodium aluminosilicate hydrate (N-A-S-H). Dalton Transactions, 50(39), 13968–13984.

Wang, P., Li, Y., Cavallini, A., Zhang, J., Xiang, E., & Wang, K. (2018, October 21st-24th). The Influence of Relative Humidity on Partial Discharge and Endurance Features under Short Repetitive Impulsive Voltages. 2018 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP). pp. 506–509. https://doi.org/10.1109/ CEIDP.2018.8544905

Wielgus, N., Górski, M., & J., K. (2021). Discarded cathode ray tube glass as an alternative for aggregate in a metakaolin-based geopolymer. Sustainability, 13(2), 479. https://doi.org/10.3390/su13020479

Zhang, S., Ukrainczyk, N., Zaoui, A., & Koenders, E. (2024). Electrical conductivity of geopolymer-graphite composites: Percolation, mesostructure and analytical modeling. Construction and Building Materials, 411, 134536.

Downloads

Published

2025-12-27