Wave solutions to the Landau-Ginzburg-Higgs equation and the modified KdV-Zakharov-Kuznetsov equation by the Riccati-Bernoulli sub-ODE method
Keywords:
Riccati-Bernoulli sub-ODE method, partial differential equations, (1 1)-dimensional Landau-Ginzburg-Higgs, (3 1)-dimensional modified KdV-Zakharov-Kuznetsov equationAbstract
In this paper, exact traveling wave solutions of the (1+1)-dimensional Landau-Ginzburg-Higgs equation and the (3+1)-dimensional modified KdV-Zakharov-Kuznetsov equation, which are the partial differential equations for ion wave equations, are extracted using the Riccati-Bernoulli sub-ODE method. The obtained solutions are shown by hyperbolic and trigonometric functions, which can be transformed into kink waves and periodic waves in their physical nature.
References
Abdelrahman, M. A., Sohaly, M. A. & Alharbi, A. (2019). The new exact solutions for the deterministic and stochastic (2+1)-dimensional equations in natural sciences. Journal of Taibah University for Science, 13(1),834-843.
Abdel-Gawad, H. I., Tantawy, M., & Abdelwahab, A. M. (2022). Anew technique for solving Burgers-Kadomtsev-Petviashvili equation with an external source. Suppression of wave breaking and shock wave. Alexandria Engineering Journal, 69(1), 167-176.
Akter, J., & Akbar, M. A. (2015). Exact solutions to the Benney–Luke equation and the Phi-4 equations byusing modified simple equation method.Results in Physics,5(1), 125-130.
Akbar, M. A., Ali, N. H. M. & Roy, R. (2018). Closed form solutions of two time fractional nonlinear wave equations. Results in Physics, 9(1), 1031-1039.
Alam, M. N., Hafez, M. G., & Akbar, M. A. (2015). Exact traveling wave solutions to the (3+1)-dimensional mKdV–ZK and the (2+1)-dimensional Burgers equations via exp ()()− −expansion method. Alexandria Engineering Journal,54(3), 635-644.
Alharbi, A. R., & Almatrafi, M. B. (2020). Riccati–Bernoulli sub-ODE approach on the partial differential equations andapplications.International Journal of Mathematics and Computer Science,15(1), 367-388.
Ali, A. T. (2011). New generalized Jacobi elliptic function rational expansion method. Journal of computational and applied mathematics, 235(14), 4117-4127.
Babi, S. & Mohyud-Din, S. T. (2014). New traveling wave solutions of Drinefel’d–Sokolov–Wilson Equation using Tanh and Extended Tanh methods. Journal of the Egyptian Mathematical Society, 22(3), 517-523.
Barman, H. K., Akbar, M. A., Osman, M. S., Nisar, K. S., Zakarya, M., Abdel-Aty, A. H., & Eleuch, H. (2021). Solutions to the Konopelchenko-Dubrovsky equation and the Landau-Ginzburg-Higgs equation via the generalized Kudryashov technique.Results in Physics,24, 104092.
Hassan, S. Z., Alyamani, N. A., & Abdelrahman, M. A. (2019). A construction of new traveling wave solutions for the 2D Ginzburg-Landau equation.The European Physical Journal Plus,134(9), 425.
He, J. H., & Wu, X. H. (2006). Exp-function method for nonlinear wave equations.Chaos, Solitons & Fractals,30(3), 700-708.
Hosseini, K., Hinçal, E., & Ilie, M. (2023). Bifurcation analysis, chaotic behaviors, sensitivity analysis, and soliton solutions of a generalized Schrödinger equation.Nonlinear Dynamics,111(18), 17455-17462.
Hosseini, K., Hincal, E., Mirekhtiary, F., Sadri, K., Obi, O. A., Denker, A., & Mirzazadeh, M. (2023). A fourth-order nonlinear Schrödinger equation involving power law and weak nonlocality: Its solitary waves and modulational instability analysis.Optik,284, 170927.
Hosseini, K., Sadri, K., Hinçal, E., Sirisubtawee, S., & Mirzazadeh, M. (2023). A generalized nonlinear Schrödinger involving the weak nonlocality: its Jacobi elliptic functionsolutions and modulational instability.Optik,288, 171176.
Hosseini, K., Sadri, K., Hincal, E., Abbasi, A., Baleanu, D., & Salahshour, S. (2023). Periodic and solitary waves of the nonlinear Konno–Oono model: generalized methods.Optical and Quantum Electronics,55(6), 564.
Iatkliang, T., Kaewta, S., Tuan, N. M., & Sirisubtawee, S. (2023). Novel Exact Traveling Wave Solutions for Nonlinear Wave Equations with Beta-Derivatives via the sine-Gordon Expansion Method.Wseas transactions on mathematics, 22, 432-450.
Kumar, A., & Pankaj, R. D. (2015). Tanh–coth scheme for traveling wave solutions for Nonlinear Wave Interaction model.Journal of the Egyptian Mathematical Society,23(2), 282-285.
Munro, S., & Parkes, E. J. (1999). The derivation of a modified Zakharov–Kuznetsov equation and the stability of its solutions.Journal of Plasma Physics,62(3), 305-317.
Raslan, K. R., EL-Danaf, T. S., & Ali, K. K. (2017). New exact solution of coupled general equal width wave equation using sine-cosine function method.Journal of the Egyptian Mathematical Society,25(3), 350-354.
Roozi, A., Alibeiki, E., Hosseini, S. S., Shafiof, S. M., & Ebrahimi, M. (2011). Homotopy perturbation method for special nonlinear partial differential equations.Journal of King Saud University-Science,23(1), 99-103.
Sanjun, J., & Chankaew, A. (2022). Wave solutions of the DMBBM equation and the cKG equation using the simple equation method.Frontiers in Applied Mathematics and Statistics,8, 952668.
Shehata, M. S. (2016). A new solitary wave solution of the perturbed nonlinear Schrodinger equation using a Riccati-Bernoulli Sub-ODE method.International Journal of the Physical Sciences,11(6), 80-84.
Yang, X. F., Deng, Z. C., & Wei, Y. (2015). A Riccati-Bernoulli sub-ODE method for nonlinear partial differential equations and its application.Advances in Difference equations,2015(1), 1-17.

Downloads
Published
Issue
Section
Categories
License
Copyright (c) 2024 Journal of Applied Science and Emerging Technology

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.