การออกแบบคานสะพานคอนกรีตอัดแรงแบบตันที่เหมาะสมด้วยอัลกอริทึมแบ่งครึ่งช่วง
คำสำคัญ:
การออกแบบที่เหมาะสม, อัลกอริทึมแบ่งครึ่งช่วง, คอนกรีตอัดแรง, คานสะพานแบบตัน, การออกแบบสะพานบทคัดย่อ
งานวิจัยนี้นำเสนอการประยุกต์ใช้อัลกอริทึมแบ่งครึ่งช่วงสำหรับการออกแบบคานสะพานคอนกรีตอัดแรงแบบตันที่เหมาะสม เพื่อหาตัวแปรออกแบบตามมาตรฐานของวิศวกรรมสถานแห่งประเทศไทย วสท. 1009-34, 2553 ด้วยวิธีกำลัง สำหรับน้ำหนักของรถบรรทุกแบบ HS20 – 44 ตามมาตรฐาน AASHTO LRFD 1992 อัลกอริทึมถูกพัฒนาและเปรียบเทียบกับ Hill climbing algorithm ด้วยโปรแกรมไมโครซอฟท์วิชวลเบสิก 6.0 และทดสอบกับตัวอย่างที่ใช้บ่อย 3 ตัวอย่าง เป็นคานช่วงเดียวมีฐานรองรับแบบง่ายที่แตกต่างกันที่ช่วงความยาวพาด ซึ่งมีฟังก์ชันเป้าหมายคือหาราคาต่ำสุด ตัวแปรออกแบบประกอบด้วย กำลังของคอนกรีต (fc’) กำลังครากของเหล็กเสริม (fy) กำลังดึงประลัยของลวดเกลียวอัดแรง (fpu) ขนาดและปริมาณเหล็กเสริม ลวดเกลียวอัดแรง และขนาดของหน้าตัดคาน จากผลการศึกษาพบว่า เฉลี่ยร้อยละ 25.26 ของอัลกอริทึมแบ่งครึ่งช่วง มีการประมวลรอบผลลัพธ์ที่รวดเร็วกว่า Hill climbing algorithm
References
Moothong N (2019). The evolution of the bridge construction by Prestressed concrete technology. In: Department of Science Service. Available via DIALOG.
http://www.siweb1.dss.go.th>journal 16 May 2020.
Chorwichian V, Chorwichian V (2017). Prestressed concrete fundamental. In: Reinforced Concrete Design (SDM). (pp. 507-532). Bangkok.
Akin A, Saka M P (2015). Harmony search algorithm bases optimum detailed design of reinforced concrete plan frames subject to ACI 318-05 provisions. Computers and Structures, 147: 79–95.
Aga A A A, Adam F M (2015). Design Optimization of Reinforced Concrete Frames. Open Journal of Civil Engineering, 5: 34–48.
Tapown A, Cheerarot R (2017). Optimal parameters and performance of artificial bee colony algorithm for minimum cost design of reinforced concrete frames. Engineering Structures, 151: 802–820.
Limkamontip W (2005). Using Genetic Algorithm to Design and Optimize Prestressed Concrete Beam Bridges. M. Eng Thesis, Department of Civil Engineering, King Mongkut’s Institute of Technology North Bangkok, Thailand.
Banluepuech N, Smithakorn W (2019). Optimum Design of Prestressed Concrete Box Girder Bridges using Particle Swarm Optimization. The 24th National Convention on Civil Engineering (NCCE24), Civil Engineer’s Contribution to Thailand 4.0+, 10-12 July 2019, Centara Hotel & Convention Centre, Udon Thani.
Tapown A, Cheerarot R (2558). Optimum Design of Reinforced Concrete Biaxial Bending Rectangular Column using Artificial Bee Colony Algorithm. Ladkrabang Engineering Journal, 32: 49–54.
Tapown A, Lamom A, Cheerarot R (2555). Optimum Design of Reinforced Concrete Rectangular Column using Hill Climbing Algorithm. Research and development journal of the engineering institute of Thailand, 23: 28–35.
Patchotichai S, Jitrapinat N, Lamom A (2561). Optimum design of Axial loaded reinforced concrete Column Using Bisection algorithm. Ladkrabang Engineering Journal, 35: 55–56.
AASHTO (1992). Standard Specifications for Highway Bridge, Fifteen Edition, American Association of State Highway and Transportation Officials, Inc., USA.
The Engineering institute of Thailand, Standard of prestressed concrete building (2553). Strength Design method, E.I.T. Standard 1009-34.
Vivithkeyoonvong S (2555). Design of Prestressed Concrete. Civil Engineering, Kasetsart University, Bangkok.
Pearl J (1984). Heuristic: Intelligent search strategies for computer problem solving, Addision-Wesley Publishing Co.
Esfandiari MJ, Urgessa GS, Sheikholarefin S, Manshadi SHD (2018). Optimum design of 3D reinforced concrete frames using DMPSO Algorithm. Advances in Engineering Software, 115: 149–160.
Dechaumphai P, Wansophark N (2012). Numerical Method in Engineering. Chulalongkorn University, Bangkok.
Committee of construction price (2016). Labor account / operation for estimate and calculate price. Available via DIALOG.
http://www.yothathai.com 2 Aug.2020
Kanjanasamranwang P (2561). Excel Static Analysis. In: Statistical Hypothesis (pp. 145-192). Bangkok.