แบบจำลองโครงข่ายประสาทเทียมสำหรับการทำนายค่าความเค้นแรงดึงในการเชื่อมภาชนะแรงดันสูงด้วยเหล็กกล้า ASTM A537 Class1

Main Article Content

ปรัชญา เพียสุระ

บทคัดย่อ

          งานวิจัยนี้มีวัตถุประสงค์เพื่อสร้างแบบจำลองทางคณิตศาสตร์ ด้วยแบบจำลองโครงข่ายประสาทเทียมในการทำนายค่าความเค้นแรงดึง สำหรับการเชื่อมภาชนะทนแรงดันสูงในเหล็กกล้า ASTM A537 Class1 ด้วยกระบวนการเชื่อมใต้ฟลักซ์ สำหรับพารามิเตอร์ที่ใช้ในการศึกษา ได้แก่ กระแสไฟฟ้า แรงดันไฟฟ้า และความเร็วในการเดินแนวเชื่อม หลังจากทำการเชื่อมได้มีการทดสอบค่าความเค้นแรงดึง วิเคราะห์โครงสร้างจุลภาคด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด และสร้างแบบจำลองทางคณิตศาสตร์ ผลการวิจัยพบว่าแบบจำลองทางคณิตศาสตร์ที่เหมาะสม คือ แบบจำลองทางคณิตศาสตร์จากวิธีโครงข่ายประสาทเทียม โครงสร้างของโครงข่ายประสาทเทียมที่เหมาะสม คือ 3-นิวรอนในชั้นอินพุต 3 นิวรอน จำนวนนิวรอนในชั้นซ่อน 14 นิวรอน และจำนวนนิวรอนในชั้นแสดงผล 1 นิวรอน (3-14-1) การเรียนรู้แบบเลเวนเบิร์ก-มาร์คสำหรับการปรับค่าน้ำหนักและไบแอส รูปแบบฟังก์ชันการกระตุ้น คือ ฟังก์ชันลอก-ซิกมอยด์ สำหรับชั้นนำเข้า  ฟังก์ชันแทน-ซิกมอยด์ สำหรับชั้นซ่อน และฟังก์ชันเพียวรินสำหรับชั้นผลลัพธ์ มีค่าเฉลี่ยความผิดพลาดที่ 0.284 สภาวะการเชื่อมที่มีค่าความเค้นแรงดึงสูงสุดพบโครงสร้างจุลภาคเพิร์ลไลต์ละเอียด ลักษณะกลม มีการกระจายตัวกันอย่างหนาแน่น แบบจำลองทางคณิตศาสตร์ที่ได้มีประสิทธิภาพสามารถนำไปประยุกต์ใช้เพื่อทำนาย ควบคุมคุณภาพของรอยเชื่อมให้ได้ค่าความเค้นแรงดึง ตามข้อกำหนดในมาตรฐาน เพื่อลดต้นทุนในการผลิตและเพิ่มประสิทธิภาพในการเชื่อมต่อไป

Article Details

บท
บทความวิจัย

References

[1] W. H. Kearns, Welding handbook metals and their weldability, 7th ed. USA: American Welding Society, 1982.

[2] R. L. Obrien, Welding handbook welding processes, 8th ed. USA: American Welding Society, 1992.

[3] The lincon electric company, The Procedure Hand book of Arc Welding, USA: The Lincoln Electric Company, 1995.

[4] V. D. Kalyankar and G. Chudasama, “Effect of post weld heat treatment on mechanical properties of pressure vessel steels,” Materials Today: Proceedings, Vol. 5, No. 11, Part 3, pp. 24675–24684, Jan. 2018.

[5] B. Sadeghi, H. Sharifi, M. Rafiei, and M. Tayebi, “Effects of post weld heat treatment on residual stress and mechanical properties of GTAW: The case of joining A537CL1 pressure vessel steel and A321 austenitic stainless steel,” Engineering Failure Analysis, Vol. 94, pp. 396–406, Dec. 2018.

[6] T. Chinnadurai, S. Saravanan, N. Prabaharan, M. Karthigai Pandian, and S. Deebika, “Analyzing the weld strength of ultrasonic polymer welding using Artificial Neural Networks,” Materials Today: Proceedings, Vol. 5, No. 14, Part 2, pp. 28320–28327, Jan. 2018.

[7] R. Vaira Vignesh and R. Padmanaban, “Artificial neural network model for predicting the tensile strength of friction stir welded aluminium alloy AA1100,” Materials Today: Proceedings, Vol. 5, No. 8, Part 3, pp. 16716–16723, Jan. 2018.

[8] K. Kamal Babu et al., “Parameter optimization of friction stir welding of cryorolled AA2219 alloy using artificial neural network modeling with genetic algorithm,” The International Journal of Advanced Manufacturing Technology, Vol. 94, No. 9, pp. 3117–3129, Feb. 2018.

[9] A. Sarkar, P. Dey, R. N. Rai, and S. C. Saha, “A comparative study of multiple regression analysis and back propagation neural network approaches on plain carbon steel in submerged-arc welding,” Sādhanā, Vol. 41, No. 5, pp. 549–559, May 2016.

[10] L. Yu, K. Saida, S. Hirano, N. Chigusa, M. Mochizuki, and K. Nishimoto, “Application of neural network-based hardness prediction method to HAZ of A533B steel produced by laser temper bead welding,” Welding in the World, Vol. 61, No. 3, pp. 483–498, May 2017.

[11] L. Srinivasan, M. C. Khan, T. D. B. Kannan, P. Sathiya, and S. Biju, “Application of Genetic Algorithm Optimization Technique in TIG Welding of 15CDV6 Aerospace Steel,” Silicon, Vol. 11, No. 1, pp. 459–469, Feb. 2019.

[12] M. W. Dewan, D. J. Huggett, T. Warren Liao, M. A. Wahab, and A. M. Okeil, “Prediction of tensile strength of friction stir weld joints with adaptive neuro-fuzzy inference system (ANFIS) and neural network,” Materials & Design, Vol. 92, pp. 288–299, Feb. 2016.

[13] D. Zhao, D. Ren, K. Zhao, S. Pan, and X. Guo, “Effect of welding parameters on tensile strength of ultrasonic spot welded joints of aluminum to steel – By experimentation and artificial neural network,” Journal of Manufacturing Processes, Vol. 30, pp. 63–74, Dec. 2017.

[14] V. V. Narayanareddy, N. Chandrasekhar, M. Vasudevan, S. Muthukumaran, and P. Vasantharaja, “Numerical Simulation and Artificial Neural Network Modeling for Predicting Welding-Induced Distortion in Butt-Welded 304L Stainless Steel Plates,” Metallurgical and Materials Transactions B, Vol. 47, No. 1, pp. 702–713, Feb. 2016.

[15] N. Pavan Kumar, P. K. Devarajan, S. Arungalai Vendan, and N. Shanmugam, “Prediction of bead geometry in cold metal transfer welding using back propagation neural network,” The International Journal of Advanced Manufacturing Technology, Vol. 93, No. 1, pp. 385–392, Oct. 2017.

[16] The American Society of Mechanical Engineers, Boiler and Pressure Vessel Section IX Welding, Brazing, and Fusing Qualifications, USA: The American Society of Mechanical Engineers, 2015.

[17] B. Venugopal Rao, N. Aravindan, and K. Saraswathamma, “Experimentation of effect of process parameters on mechanical properties in SAW Process,” Materials Today: Proceedings, Vol. 5, No. 13, Part 3, pp. 26961–26967, Jan. 2018.

[18] American Welding Society, AWS A5.17 Specification for Carbon Steel Electrodes and Fluxes for Submerged Arc Welding, USA: American Welding Society, 2019.

[19] American Society for Metal, ASM Handbook Metallography and Microstructures, Vol. 9, American Society for Metal, USA:, 1985.

[20] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and H. Arshad, “State-of-the-art in artificial neural network applications: A survey,” Heliyon, Vol. 4, No. 11, p. e00938, Nov. 2018.

[21] W.-B. Oh, T.-J. Yun, B.-R. Lee, C.-G. Kim, Z.-L. Liang, and I.-S. Kim, “A Study on Intelligent Algorithm to Control Welding Parameters for Lap-joint,” Procedia Manufacturing, Vol. 30, pp. 48–55, Jan. 2019.

[22] J.-Y. Shim, J.-W. Zhang, H.-Y. Yoon, B.-Y. Kang, and I.-S. Kim, “Prediction model for bead reinforcement area in automatic gas metal arc welding,” Advances in Mechanical Engineering, Vol. 10, No. 8, pp. 1-9, Aug. 2018.

[23] R.H. Myers, D.C Montgomery, Response Surface Methodology Process and Product Optimization using Designed Experiments, 2nd ed., Hoboken, New Jersey: John Wiley and Sons, 2002.

[24] D. Hauserova, J. Dlouh, and M. Kover “Pearlite Lamellae Spheroidisation During Austenitization and Subsequent Temperature Hold”, Archives of Metallurgy and Materials, Vol. 62, No. 1, pp. 201-204, 2017.

[25] X. Bai, S. Wu, and P. K. Liaw, “Influence of thermo-mechanical embrittlement processing on microstructure and mechanical behavior of a pressure vessel steel,” Materials & Design, Vol. 89, pp. 759–769, Jan. 2016.

[26] W. Hui, Y. Zhang, X. Zhao, N. Xiao, and F. Hu, “High cycle fatigue behavior of V-microalloyed medium carbon steels: A comparison between bainitic and ferritic-pearlitic microstructures,” International Journal of Fatigue, Vol. 91, pp. 232–241, Oct. 2016.

[27] W. Yun, B. Philip, X. Zhenying, and W. Junfeng, “Study on fatigue crack growth performance of EH36 weldments by laser shock processing,” Surfaces and Interfaces, Vol. 15, pp. 199–204, Jun. 2019.

[28] J. Toribio, B. González, J.-C. Matos, and F.-J. Ayaso, “Influence of Microstructure on Strength and Ductility in Fully Pearlitic Steels,” Metals, Vol. 6, No. 12, p. 318, Dec. 2016.

[29] M. Saadati, A. K. Edalat Nobarzad, and M. Jahazi, “On the hot cracking of HSLA steel welds: Role of epitaxial growth and HAZ grain size,” Journal of Manufacturing Processes, Vol. 41, pp. 242–251, May 2019.