Time Series Prediction Using Artificial Neural Network and Its Application Mackey-Glass Equation and Stock Index
Main Article Content
Abstract
This paper presents time series prediction using artificial neural network and its application Mackey-Glass equation and stock index. The prediction method is a neural network with nonlinear autoregressive network with exogenous inputs (NARX) that utilizes the weight and bias values to adjust the optimized network parameter through learning algorithms. The optimization is achieved through the smallest mean square value. Test for prediction of time series is done by two methods: the Mackey-Glass and real SET50 stock index. The proposed method shows very low errors and can also be useful re real-world applications in enterprises.
Article Details
Article Accepting Policy
The editorial board of Thai-Nichi Institute of Technology is pleased to receive articles from lecturers and experts in the fields of business administration, languages, engineering and technology written in Thai or English. The academic work submitted for publication must not be published in any other publication before and must not be under consideration of other journal submissions. Therefore, those interested in participating in the dissemination of work and knowledge can submit their article to the editorial board for further submission to the screening committee to consider publishing in the journal. The articles that can be published include solely research articles. Interested persons can prepare their articles by reviewing recommendations for article authors.
Copyright infringement is solely the responsibility of the author(s) of the article. Articles that have been published must be screened and reviewed for quality from qualified experts approved by the editorial board.
The text that appears within each article published in this research journal is a personal opinion of each author, nothing related to Thai-Nichi Institute of Technology, and other faculty members in the institution in any way. Responsibilities and accuracy for the content of each article are owned by each author. If there is any mistake, each author will be responsible for his/her own article(s).
The editorial board reserves the right not to bring any content, views or comments of articles in the Journal of Thai-Nichi Institute of Technology to publish before receiving permission from the authorized author(s) in writing. The published work is the copyright of the Journal of Thai-Nichi Institute of Technology.
References
“SET50 & SET100Indices Rule”, ฝ่ายพัฒนาธุรกิจ–ตราสารหนี้และอื่นๆตลาดหลักทรัพย์แห่งประเทศไทย, มกราคม 2556.
Wilton.W.T. Fok, IAENG, Vincent.W.L. Tam, Hon N, “Computational Neural Network forGlobal Stock Indexes Prediction”, Proceedings of the World Congress on Engineering 2008 Vol II, WCE 2008, July 2 - 4, 2008, London, U.K.
Mike P. Hanias, and Panayiotis G. Curtis, “Time Series Prediction of DollarEuro Exchange Rate Index”, International Research Journal of Finance and Economics, ISSN 1450-2887, Issue 15, Euro Journals Publishing, 2008.
Ali Moeini Associate Professor, “Forecasting Gold Price via Chaotic Models and Lyapunov Exponent”, Faculty of Engineering, University of Tehran, Mehdi Ahrari Econometrics Researcher, PartoKarimi Bs in Apply Mathematics, Faculty of Sciences, University of Tehran
ร้อยโทสุวรรณ บุญวิจิตร, “ระบบการพยากรณ์ราคาข้าวเปลือกเจ้านาปี 5 เปอร์เซ็นต์โดยใช้โครงข่ายใยประสาทเทียมผ่านเครือข่ายอินเทอร์เน็ต”, คณะเทคโนโลยีสารสนเทศ สถาบันเทคโนโลยีพระจอมเกล้าพระนครเหนือ 2549.
เกียรติศักด์ จันทร์แก้ว และ สุพจน์นิตย์ สุวัฒน์ “การเปรียบเทียบผลการพยากรณ์อนุกรมเวลาราคาปาล์มน้ำมันโดยการใช้โครงข่ายประสาทเทียมฟังก์ชันพหุนามและโครงข่ายประสาทเทียม”, คณะวิทยาศาสตร์ สาขาระบบสารสนเทศเพื*อการจัดการ คณะเทคโนโลยีสารสนเทศ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนครเหนือ 2011.