Corn cob Powder (CCP) Filled Natural Rubber (NR) Composites with Si69 as Coupling Agent: Effect of Si69 Content on Properties of the Composites

Main Article Content

Supalak Attharangsan
Sunan Saikrasun

Abstract

In this study, bis-(3-triethoxysilylpropyl) tetrasulphane (or Si69) was used as coupling agent for corn cob powder (CCP) filled natural rubber (NR) composites and also varied from 0 to 5 phr, i.e. 0, 1, 1.5, 2, 3 and 5 phr. The effect of Si69 content on curing characteristics, tensile properties, fatigue life, morphology and rubber-filler interaction of the CCP filled NR composites was investigated. The results show that maximum torque, tensile strength, moduli at 100% and 300% extension, elongation at break, fatigue life and rubber-filler interaction increase with the increase in Si69 content up to 2 phr. Beyond that, the overall properties decrease. However, there is no significant effect of Si69 content on  scorch time and cure time.  The SEM studies also reveal greater adhesion between CCP particles and rubber matrix due to incorporation of Si69. Finally, it can be concluded that Si69 at 2 phr is the optimum loading which provides the best overall properties of CCP filled NR composites.

Article Details

Section
Research Article

References

Abdelmouleh M., Boufi S., Belgacem M. N., Dufresne A. (2007). Short natural-fibre reinforced polyethylene and natural rubber composites: Effect of silane coupling agents and fibres loading. Composites Science and Technology, 67, 1627-1639.
Asim M., Jawaid M., Abdan K., Ishak M. R. (2018). The Effect of Silane Treated Fibre Loading on Mechanical Properties of Pineapple Leaf/Kenaf Fibre Filler Phenolic Composites. Journal of Polymers and the Environment, 26, 1520–1527.
Asyraf M. R. M., Rafidah M., Azrina A., Razman M. R. (2021). Dynamic mechanical behaviour of kenaf cellulosic fibre biocomposites: a comprehensive review on chemical treatments. Cellulose, 28, 2675–2695.
Chanda A. K., Hazra A., Kumar M. P., Neogi S., Neogi S. (2015). Chemical treatments of rice husk filler and jute fiber for the use in green composites. Fibers and Polymers, 16, 902–910.
Office of Agricultural Economics. (2021). Corn for Animal Feed. http://www.oae.go.th/view/1/ตารางแสดงรายละเอียด ข้าวโพดเลี้ยงสัตว์/TH-TH
Formela K., Hejna A., Piszczyk Ł., Saeb M. R., Colom X. (2016). Processing and structure–property relationships of natural rubber/wheat bran biocomposites. Cellulose, 23, 3157–3175.
Fröhlich J., Niedermeier W., Luginsland H. D. (2005). The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Composites Part A: Applied Science and Manufacturing, 36, 449-460.
Huda M. S., Drzal L. T., Mohanty A. K., Misra M. (2007). The effect of silane treated- and untreated-talc on the mechanical and physico-mechanical properties of poly(lactic acid)/newspaper fibers/talc hybrid composites. Composites Part B: Engineering, 38, 367-379.
Ishak Z. A. M.,Bakar A. A.,Ishiaku U. S., Hashim A. S.,Azahari B. (1997). An investigation of the potential of rice husk ash as a filler for epoxidized natuaral rubber II: Fatigue behaviour. European Polymer Journal, 33, 73-79.
Jacob M., Thomas S., Varughese K. T. (2004). Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Composites Science and Technology, 64, 955-965.
Kabir M. M., Wang H., Lau K. T., Cardona F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B: Engineering, 43, 2883-2892.
Kengkhetkit N., Amornsakchai T. (2014). A new approach to “Greening” plastic composites using pineapple leaf waste for performance and cost effectiveness. Materials and Design, 55, 292-299.
Lee B. H., Kim H. S., Lee S., Kim H. J., Dorgan J. R. (2009). Bio-composites of kenaf fibers in polylactide: Role of improved interfacial adhesion in the carding process. Composites Science and Technology, 69, 2573-2579.
Lorenz O., Parks C. R. (1961). The crosslinking efficiency of some vulcanizing agents in natural rubber. Journal of Polymer Science, 50, 299-312.
Maziad N. A., EL-Nashar D. E., Sadek E. M. (2009). The effects of a silane coupling agent on properties of rice husk-filled maleic acid anhydride compatibilized natural rubber/low-density polyethylene blend. Journal of Materials Science, 44, 2665–2673.
Osabohien E., Egboh S. H. O. (2008). Utilization of bowstring hemp fiber as a filler in natural rubber compounds. Journal of Applied Polymer Science, 107, 210-214.
Poh B. T., Ng C. C. (1998). Effect of silane coupling agents on the mooney scorch time of silica-filled natural rubber compound. European Polymer Journal, 34, 975-979.
Sae-oui P., Sirisinha C., Hatthapanit K., Thepsuwan U. (2005). Comparison of reinforcing efficiency between Si-69 and Si-264 in an efficient vulcanization system. Polymer Testing, 24, 439-446.
Sae-oui P., Sirisinha C., Thepsuwan U., Hatthapanit K. (2006). Roles of silane coupling agents on properties of silica-filled polychloroprene. European Polymer Journal, 42, 479-486.
Xie Y., Hill C. A. S., Xiao Z., Militz H., Mai C. (2010). Silane coupling agents used for natural fiber/polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 41, 806-819.
Yan H., Sun K., Zhang Y., Zhang Y., Fan Y. (2004). Effects of silane coupling agents on the vulcanization characteristics of natural rubber. Journal of Applied Polymer Science, 94, 1511-1518.
Zhou Y., Fan M., Chen L., Zhuang J. (2015). Lignocellulosic fibre mediated rubber composites: An overview. Composites Part B: Engineering, 76, 180-191.