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Abstract

In this study, titanium carbonitride
(TiCN) thin films were deposited
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Cathodic Arc Deposition
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using cathodic arc  deposition  TiCN thin film | / - &
techniques. The as-deposited TiCN 5™ S g
thin films were subsequently ( : %;“ { mg’
subjected to annealing treatment by g" = . 8

rapid thermal annealing (RTA) ®%
technique at a temperature range from

400 to 600 °C. The effect of RTA
temperature on the crystallinity, morphology, chemical composition, and mechanical properties of the
TiCN thin films was investigated. The grazing incident X-ray diffraction (GIXRD) analysis confirmed
the presence of a dominant face-centered cubic TiCN phase. Cross-sectional field-emission scanning
electron microscopy (FE-SEM) images revealed a compact and homogeneous morphology, which
became more pronounced with increasing RTA temperatures. The X-ray photoelectron spectroscopy
(XPS) indicated the atomic concentration of the primary element (Ti, C, and N) remained relatively
stable throughout the annealing process. Furthermore, the hardness of the TiCN thin films improved at
400 °C-RTA temperature.
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1. Introduction including high hardness, toughness, anti-

Ti-based compound thin films, such as TiN, corrosion, thermal stability, and excellent wear
TiC, and TiCN thin films, are extensively resistance. Recently, the TiCN thin films have
employed in various industry sectors, including garnered significant attention in tribological
chemical, bioengineering, tool, aerospace, and applications because they offer a combination
automotive industries [1-5]. This widespread of the high hardness and low friction coefficient
use is attributed to their exceptional properties, of the TiC phase with the high toughness,
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excellent wear resistance, low friction
coefficient and biocompatibility of the TiN
phase [6-10]. These properties make TiCN a
promising material for cutting tools, coating in
high-wear environments, and medical device
applications [11-12].

Several deposition techniques based on
physical vapor deposition (PVD) methods, such
as reactive magnetron sputtering [13-15] and
arc-evaporation [16], pulsed laser deposition
[17], and cathodic arc deposition [18-21] have
been employed to fabricate the TiCN thin film.
Among these, cathodic arc deposition is a
versatile thin films deposition technique that
utilizes the natural energy of the depositing
ions, typically in the range from tens to
hundreds of eV without bias [22]. This
deposition method gains deposition rates,
suitable for large area-coatings and excellent
uniformity. Furthermore, it is widely used in
decorative and hard coatings for the tool
industry, as it provides high film homogeneity,
density, good adhesion and the capability to
deposit high melting point materials [23-25].
Notably, the deposition parameters in this
method significantly influence the film's
crystalline, morphology, and mechanical
properties, enabling optimization for specific
operating environments, particularly under
high-temperature  conditions [19, 26-30].
Consequently, understanding the film's
structural evolution and the changes in its
resulting mechanical properties have become
important.

Generally, the TiCN prepared by cathodic
arc deposition exhibit certain drawbacks that
can limit their performance in industry
applications. One of the major issues is
microparticle contamination, which results
from high-energy ion bombardment during
deposition. These particles create surface
roughness, leading to defects that affect coating
uniformity and  mechanical  properties.
Additionally, the high-energy deposition
process induces significant residual stress,
which can cause film cracking and poor
adhesion [19, 31].

To address these challenges, post-annealing
treatments were relatively straightforward and

11

convenient approaches to modifying the
physical, chemical, and mechanical properties
of thin film materials [32-34]. Annealing at
elevated temperatures could facilitate crystal
structure relaxation, reduce defects, and
enhance crystalline arrangement, ultimately
improving properties such as electrical
conductivity and mechanical properties.
However, limited research has been conducted
to comprehensively evaluate the effect of
annealing  temperature and  mechanical
properties of TiCN thin films.

In this study, the TiCN thin films were
deposited using cathodic arc deposition.
Following film deposition, the as-deposited
TiCN thin films were subjected to post-
annealing at temperatures ranging from 400 to
600 °C using the rapid thermal annealing (RTA)
technique under low-vacuum conditions. Note
that the RTA offer advantages over the
conventional annealing process, due to its high
heating rate and short processing time, which
could minimize unwanted diffusion effect,
suppress material decomposition and reduce
undesirable phase transformations [35].

The influence of RTA temperature on film
crystallinity, morphology, surface roughness,
chemical composition, and mechanical
properties was systematically investigated and
analyzed.

2. Materials and Methods

The TiCN thin film deposition was
performed with a commercial cathodic arc
deposition system. High-purity titanium
(99.95%) was used as target material. Further
detail regarding the cathodic arc deposition
system can be found in previously published
work [21]. The square 1 cm? silicon (Si) wafer
substrates were cleaned using ultrasonication in
acetone, isopropanol, and DI water for 15
minutes each. The deposition chamber was
evacuated to the base pressure of 2x107 Pa.
Before the TiCN thin film deposition, a TiN
ultra-thin film layer was prepared as an
adhesion layer between the TiCN coating and
the Si substrate. The TiN ultra-thin film layer
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was deposited using argon (Ar) and nitrogen
(N2) gases for 1 minute, while all other
deposition conditions were identical to those
used for the TiCN thin film, as described below.

During the TiCN thin film coating, high-
purity argon (Ar), nitrogen (N2), and acetylene
(CoHz) gases were introduced into the
deposition chamber at flow rates of 480, 1250,
and 2800 sccm, respectively, which were
controlled by a mass flow controller. The
deposition parameters were set as follows: a
substrate bias of -100 V, substrate temperature
of 130 °C, substrate rotation speed of 4 rpm, arc
potential of 300 V, and deposition time of 3.5
minutes. After the deposition of TiCN thin film,
the as-deposited TiCN thin films were annealed
at temperatures ranging from 400 to 600 °C
under a low-vacuum state with a pressure of
about 61073 mbar. This annealing process was
performed using a 1-minute RTA system to
investigate the film properties.

The film crystalline structure, morphology,
and surface roughness before and after
annealing treatment were analyzed by grazing

incident ~ X-ray diffraction (GIXRD;
RigakuTtraz III), field-emission scanning
electron microscopy (FE-SEM; Hitachi

SU8030) and atomic force microscopy (AFM;
SEIKO, SP400). The chemical composition was

determined by X-ray Photoelectron
Spectroscopy at the Synchrotron Light
Research Institute (Public Organization,

Thailand) using BL3.3Ua [36]. The mechanical
properties of the as-deposited and annealed
TiCN thin films were investigated by
nanoindentation test (TI-900, Tribo Indenter,
Hysitron) with a Berkovich 142.3°.

3. Results and Discussion

The GIXRD analysis was conducted to
confirm the crystalline structure according to
the RTA temperature of the TiCN thin films, as
shown in Fig. 1. The results revealed that both
the as-deposited and annealed TiCN thin films
exhibited a peak at 20 of 36.4, 42.2, and 61.3,
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corresponding to (111), (200), and (220) crystal
plane of the FCC TiCN phase (ICDD card
number  42-1448),  respectively. This
observation confirms that all prepared TiCN
thin films were polycrystalline structures.
Moreover, after annealing at 400 and 600 °C, a
small peak around 20 at 52° could be observed,
corresponding to the Ti-rich TiCN film, as
reported in the literature [1].

111
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600 °CiRTA Temp.

400 °CRTA Temp.

Intensity (a.u.)

A:s-depositcd

20 30 40 50 60 70 80
20
Fig. 1 GIXRD of as-deposited and annealed
TiCN thin film at different RTA

temperatures.

The effect of RTA temperature on the
morphology of the TiCN thin film was observed
using FE-SEM. Cross-sectional images of the
as-deposited and annealed TiCN thin film were
presented in Fig. 2(a)-(c). The results clearly
indicate that a homogeneous TiCN thin film
was successfully deposited on the TiN ultra-thin
film adhesion layer, exhibiting excellent
adhesion properties. While the thickness value
of the as-deposited TiCN thin film was about
228 nm. It was observed that the thickness of
the TiCN thin film decreased with increasing
RTA temperature, as shown in Fig. 2(d). The
reduction in film thickness could likely be
attributed to the elimination of nano/micro-void
defects and enhanced compactness of the film
during the RTA treatment.
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Fig. 2 (a-c) Cross-sectional FE-SEM images
and film thickness of as-deposited and
(d) annealed TiCN thin film at different
RTA temperatures.

The surface morphology and roughness of
the as-deposited and annealed TiCN thin film at
different RTA temperatures were analyzed
using AFM, as shown in Fig. 3. The result
demonstrates that the surface roughness
exhibits only minor variation with increasing
the RTA temperature. Specifically, the surface
roughness slightly decreases from 1.57 to 1.20
as the RTA temperature increases from as-
deposited to 600 °C. This slight decrease in
surface roughness can be attributed to grain
boundary diffusion, coupled with strong atomic
migration and the reduction of void defect,
which is consistent with the observations from
FE-SEM results.

The chemical composition was determined
using a highly surface-sensitive XPS technique.
Fig. 4(a) presents the XPS full survey scan of
the as-deposited and annealed TiCN thin films.
Peaks corresponding to the core orbitals Ti2p,
Nls, Cls, and Ols core were observed at the
binding energies of 458.2, 399.2, 284.6, and
531.2 eV, respectively, for all prepared TiCN
films. It is important to note that the presence of
oxygen could come from the surface oxidation
occurring during the RTA process under a low-

vacuum state. Also, high carbon concentration
could be observed in all TiCN thin film samples
due to the carbon contamination during the
annealing and transfer of samples to the analysis
chamber. Fig. 4(b) illustrates the atomic
concentration of the element in all prepared
TiCN thin films. The results indicate that the
titanium level slightly increased and nitrogen
composition decreased after RAT treatment.

(a) As-deposited

4, R
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Roughnégs.' 1.57 nm
(b) 400 °C-RTA Temp.

Roughnéss: 1.06 nm
(c) 600 °C-RTA Temp.

Roughn;ss: 1.20 nm

Fig. 3 AFM images and surface roughness of
as-deposited and annealed TiCN thin
film at different RTA temperatures.
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Fig. 4 (a) XPS spectra in survey scan and (b)
atomic concentration of elements of as-
deposited and annealed TiCN thin film
at different RTA temperatures.

The hardness of the as-deposited and
annealed TiCN thin films was measured by
nanoindentation. To minimize the influence of
the Si substrate on the hardness measurement,
the applied load was carefully selected to ensure
the indentation depth remained below 10% of
the film thickness. This approach effectively
isolated the mechanical property induced by
RTA temperature. The loaded indent depth
results of the as-deposited and annealed TiCN
thin film on Si substrate are presented in Fig.
5(a). The result shows that the penetration depth
of the TiCN thin film prepared at 400 °C was
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lowest, which could be attributed to its higher
hardness compared to other samples under the
same applied loads. The relationship between
the measured hardness (H) and elastic modulus
of the TiCN thin film at different RTA
temperatures is illustrated in Fig. 5(b). The
results showed that both the hardness and elastic
modulus increased from 10.38 to 12.46 GPa and
127.24 to 137.09 GPa, respectively, as the RTA
increased to 400 °C. This improvement might
be attributed to the enhanced atomic diffusion,
which reduces nano/micro-void defects by
filling the gap and improving the compactness
of the TiCN coating. However, as the RTA
temperature increases to 600 °C, both hardness
and elastic modulus decrease, which could be
explained by the increase in grain size at higher
RTA temperature [37]. Our TiCN thin film
hardness is within the same range as that of
TiCN film deposited on Si substrates by
plasma-enhanced chemical vapor deposition
(PECVD) [38] and magnetron sputtering [1],
which typically ranges from 11.84 to 14.09
GPa. However, other studies have reported
significantly higher values for thicker TiCN
films prepared by cathodic arc deposition, with
hardness ranging from 23.6 to 41.9 GPa [19,
39]. These films were achieved by optimizing
reactive gas conditions and precisely
suppressing oxygen incorporation.
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Fig. 5 (a) Load displacement and (b)hardness
and elastic modulus of as-deposited and
annealed TiCN thin film at different
RTA temperatures.

4. Conclusion

In conclusion, the TiCN thin films were
successfully deposited by the cathodic arc
deposition technique and subsequently via RTA
treatment at temperatures ranging from 400-600
°C. The GIXRD analysis confirmed the
presence of a polycrystalline FCC structure of
TiCN phase in all prepared TiCN thin film
samples. The FE-SEM observations revealed
that the annealed process enhanced the film’s
morphology, resulting in a highly compact
structure. The atomic concentrations of the Ti,
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C, and N from XPS do not significantly change
over the RTA temperatures. Notably, the
hardness of TiCN thin films improved at 400
°C. These findings demonstrate that the RTA
technique is an effective post-treatment method
for optimized mechanical properties of the
TiCN thin films, making it a promising
approach for industrial-scale applications.
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