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Abstract  
Air quality has become a severe issue in 

Bangkok, mainly due to PM2.5 (fine 
particulate matter with particle size less 
than 2.5 μm).  Aerosol optical depth 
(AOD) obtained for active satellite data 
has been widely used to estimate PM2.5 
near the ground. Nevertheless, passive 
satellite data are rarely used to estimate 
PM2.5 near the ground. In this study, a 
total AOD in troposphere data achieved 
from the Cloud-Aerosol Lidar with 
Orthogonal Polarization (CALIOP) was 
used to determine PM2.5 with climate 
parameters (Temperature (TEM), relative humidity (RH), wind speed (WS), boundary layer height 
(BLH), and the normalized difference vegetation index (NDVI) using Linear Mixed Effect Method 
(LMEM). It was found that the coefficient (R2) increases from model 1 (0.87) to model 6 (0.99), and 
the root mean square error (RMSE) reduces from 2.65 to 0.00 μg/m3. The best model gives an R2=0.99 
(models 5 and 6). PM2.5 patterns between observed and predicted show similar representative patterns. 
Therefore, our study provides CALIPSO AOD data with a potentially helpful estimation of PM2.5. 
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1. Introduction 

Atmospheric aerosol has become a big issue 
in Bangkok, especially PM2.5, which 
substantially impacts the worldwide climate, 
environmental change, and human health [1 –  3].  
PM2.5 warning and monitoring are essential for 
human protection. Nevertheless, due to a lack of 
budget, PM2.5 monitoring is limited and only 
covers some areas. A previous study confirmed 

that PM2.5 obtained from satellite AOD 
correlates well with ground-based data [4, 5]. 
Currently, many studies are focused on the 
PM2.5-AOD model achieved from satellite data 
such as the Moderate-resolution Imaging 
Spectroradiometer (MODIS), the Visible 
Infrared Imaging Radiometer Suite (VIIRS), 
the Goddard Earth Observing System Data 
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(GEOS), and the geostationary meteorological 
satellite Himawari [6, 7]. 

PM2.5 models are obtained from various 
methods [8, 9]. Recent studies have focused on 
the variation in PM2.5 concentrations at the 
Earth’s surface [1, 2]. A few studies have 
investigated PM2.5 only in the troposphere. 
CALIPSO satellite monitors atmospheric 
clouds and aerosols with a cloud-aerosol lidar 
with orthogonal polarization in a vertical 
column of high-resolution clouds and aerosols 
to resourcefully produce the cloud and the 
aerosol categories. Much of the current 
literature on aerosol models pays particular 
attention to using CALIPSO [10, 11].  

Therefore, this work focused on estimating 
ground-based PM2.5 concentrations obtained 
from the CALIPSO AOD observation data with 
climate parameters, BLH, and NDVI using 
LMEM. Hourly PM2.5 concentrations from 
ground observation were addressed with PM2.5 
concentrations obtained from the best models.  
 
2. Materials and Methods 

Bangkok (13.60 N, 100.60 E) is a populated 
and overcrowded city. In 2022, about 11 million 
people lived in about 1,570 km2 along the Chao 
Phraya Delta. 

 
 

Fig. 1 Map of Bangkok 
 
 
 

AODs and PM2.5 data 
CALIPSO satellite was established to 

produce aerosol and cloud data in a vertical 
distribution at one depolarization and two 
scattering channels. The CALIPSO onboard 
instrument enhances the accuracy for estimating 
aerosol radiative effect and assessing clouds' 
feedback. AOD data obtained from CALIPSO 
were used daily level 2 data with 1 km x 1 km 
spatial resolution products downloaded from 
https://search.earthdata.nasa.gov/search. PM2.5 
data were collected from department. 
Climate, NDVI, and BLH parameters  
 TEM, WS, and BLH are obtained from the 
National Centers for Environmental Prediction 
(NCEP) and the National Center for 
Atmospheric Research (NCAR) (a spatial 
resolution of 2.5 × 2.5). NDVI data (a spatial 
resolution of 1 km) were downloaded from 
https://search.earthdata.nasa.gov.  
Linear mixed effect method 
 PM2.5 concentrations were retrieved by 
using the LMEM  [12, 13], which is described 
in Equation (1). Data were separated into two 
groups: train (80%) and test (20%). 
 
PM2.5 = (β! + µ!) + (β" + µ") × AOD + (β# +
µ#)TEM + (β$ + µ$)RH + (β% + µ%)WS +
(β&'µ&)BLH + (β( + µ()NDVI+ε)               (1)                                                                                                                        
where  PM2.5 is a fine particular matter.  

 𝛽 is the fixed intercept.  
𝜇 is the random intercept.  
ε is the residual error. 
AOD, TEM (◦C), RH (%), WS (m/s), 

NDVI, and BLH (m) are the factors at Bangkok 
station. β1∼β6 are the fixed slopes and µ1∼µ6 are 
random slopes.  
 
3. Results  
Descriptive statistics 

Ground-based PM2.5 concentrations were 
obtained from January 2017 to December 2021, 
Bangkok's seasons can be classified as summer 
(February to June), rainy (June to October), and 
winter (October to February). Average PM2.5 
concentrations were high in winter months, 
reaching a peak in January at 48.00 µg/m3. Low 
levels were found in summer months, reaching 
the lowest in April at 11.00 µg/m3. AOD data 

https://search.earthdata.nasa.gov/search
https://search.earthdata.nasa.gov/
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range from 0.02 to 2.05 with an average of 0.47. 
Average meteorological factors are TEM, RH, 
and WS, which are 28.60◦C, 63.38%, and 10.13 
m/s, respectively. The averages of BLH and 
NDVI are 672.51 m and 0.38, respectively. 
 
MODIS AOD Validation 
 As shown in Fig. 2, CALIPSO AODs have 
been compared to AERONET AOD and 
MODIS AOD data. CALIPSO AOD at 10 km 

products (a 1×1-pixel sampling area with 10×10 
km2) were compared to AERONET and 
MODIS AOD. 
  The results of comparing CALIPSO with 
AERONET AODs (R2=0.41 , RMSE=0.33 
μg/m3, and MAE=0 .07  μg/m3) and CALIPSO 
with MODIS AODs (R2=0.5 4 , RMSE = 0.33 
μg/m3, and MAE=0.07 μg/m3) are given a lower 
RMSE and MAE, respectively, implying tiny 
aerosol estimation uncertainty. 

 

 
Fig. 2 Comparing CALIPSO AODs with AERONET and MODIS AODs from 2017 – 2021 
 
PM2.5 model 
 The LMEM was used in PM2.5 model with 
AOD, TEM, RH, WS, BLH, and NVDI. AOD 
is the most critical parameter because it implies 
how many aerosol particles are in a vertical 
column from the earth to the top atmosphere. 
The other factors were additional to improving 
the predictive capabilities of PM2.5. In 
addition, weather conditions are necessary for 
assessing because they influence PM2.5 

concentrations near the ground [14 – 16]. All 
factors were included to the LMEM with 
significant level at ɑ = 0.001, 0.01, and 0.05. 
Table 1 exhibits LMEM models. Table 1 shows 
the results using the 5th model compared with 
Model 1, R2 significantly raises 15%, and 
RMSE falls 100 %. The best model is in the 5th 
and 6th, giving an R2 of 0.99 and an RMSE of 
0.00 μg/m3 (Table 2).  
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Table 1 The fixed effect of the LMEM model was used to predict the ground-level PM2.5 
concentrations collected from 2017-2021. 

***independent parameter is significant at the α = 0.001 level 
  **independent parameter is significant at the α = 0.01 level 
    *Independent parameter is significant at the α = 0.05 level 
 
 
Table 2 PM2.5 concentrations (μg/m3) is observed at Bangkok in Thailand. 

Model PM2.5 PM2.5predicted  
(μg/m3) 

Bias R2 RMSE  
(μg/m3) 

MAE  
    (µg/m3) 

1  
 

25.62 

26.77 -1.15 0.87 2.65 2.09 
2 26.39 -0.77 0.93 1.78 1.44 
3 26.38 -0.76 0.94 1.51 1.22 
4 26.42 -0.08 0.93 1.50 1.25 
5 25.62 0 0.99 0.00 0.00 
6 25.66 -0.04 0.99 0.00 0.00 

 

 
Fig. 3 LMEM was calculated by 38 for predicted PM2.5 concentrations (µg/m3) 

 
All factors are essential for estimating PM2.5 concentrations. Table 2 establishes the model's fixed 
intercept (β0) and slopes (β1∼β5). RH, and TEM are significant at α = 0.01 and 0.01 (Table 2). R2 of 
model 5th give the highest value, with all parameters being significant. Therefore, the 5th model showed 
the best performance. Positive relations were observed between AOD and other NDVI. At the same 
time, negative β (RH, TEM, and WS) imply a negative relationship with PM2.5. 

Model β0(Intercept) β1(AOD) β2(RH) β3(NDVI) β4(WS) β5(TEM) β6(BLH) RMSE (μg/m3) MAE 
1 17.76*** 15.92*      2.65 2.09 
2 42.41*** 5.90   -0.31*     1.78 1.44 
3      7.48 5.58   -0.50*  122.92    1.51 1.22 
4      1.47 5.89   -0.49*  133.98*   0.11   1.50 1.25 
5 72.69*** 11.53* -0.60*** 135.39*** -0.23*** -2.25***  0.00 0.00 
6 148.99*** 9.95. -0.65*** 112.28*** -0.18**   -3.00** -0.06 0.00 0.00 



Y.  J a n k o n d e e  e t  a l .  /  CREATI VE SCI ENCE 16 ( 3 )  ( 2024 )  257117  

 5 

 
PM2.5 predictions 

Fig. 4 shows the monthly observed PM2.5 and predicted PM2.5 from 2017 to 2021. PM2.5 values 
give a high value in 2021 compared with 2017. A similar pattern is detected between observed and 
predicted PM2.5.  PM2.5 from two sources is an insignificant rise from 2017 to 2021. High PM2.5 was 
found in winter compared to the rainy season due to low temperature, light wind, and non/less rain. 

 

 
 

Fig. 4 The monthly observed and predicted PM2.5 from 2017 – 2021. 
 

4. Conclusion and Discussion 
PM2.5 concentrations in Bangkok from 2017 

to 2021 were estimated using LMEM. Active 
satellite data is more reasonable in spatial and 
temporal resolutions to achieve precise data for 
measuring aerosol particles in a vertical profile. 
The aerosol profile will encourage more 
information to investigate aerosol health 
effects. Since AOD satellite data is easy to 
access, the PM2.5 model can be an effective 
prediction tool.  

All factors are essential in the PM2.5 model. 
For example, reducing PM2.5 may explain a 
negative association between WS and PM2.5 
during high wind speeds. Wind speed can 
spread aerosol particles and decrease 
concentrations [17, 18]. In winter and summer, 
TEM and WS have a negative relation, causing 
the formation of secondary aerosols [19]. A 
slight negative relation between RH and PM2.5 
indicates a slightly antagonistic association. 
BLH and NDVI also affect PM2.5 because 
adding those parameters improves the models. 

Increased PM2.5 concentrations in winter may 
be related to biomass-burning seasons[20, 21]. 
Necessary weather conditions retain aerosol 
particles suspended in the air for an extended 
time.  

This work can improve the estimation of 
PM2.5 concentrations near the ground in 
Bangkok, revealing information on harmful 
pollutant air and possible health risks.  
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