

SNRU Journal of Science and Technology

JST Seman and Palameter

Journal home page: snrujst.snru.ac.th

Effect of Monoethanolamine Concentrations for CO₂ and H₂S Elimination in Biogas Improving Process

Surajitr Pramuang

Faculty of Science and Technology, Loei Rajabhat University

234 Loei - Chiangkhan road, Muang Sub-District, Muang District, Loei Province, 42000 Thailand

Corresponding Author: surajitr@lru.ac.th

Received: 6 March 2020; Revised: 10 August 2020; Accepted: 12 August 2020; Available online: 1 September 2020

Abstract

The utilization of raw biogas that low %CH₄ content with high %CO₂ and %H₂S obtains low calorific value and metal corroded. The removal of CO₂ and H₂S is needed in biogas improving process. The solution of MEA with different concentrations using for CO₂ and H₂S elimination was investigated. A small biogas purifier consists of three parts of container with MEA solution volume 1.50 L, iron rust 1.20 kg and silica gel 1.50 kg using as the materials for chemical absorption and physical adsorption in purification process. The concentrations of MEA solution with 1, 1.50, 2, 2.50 and 3 mol L⁻¹ were compared the CO₂ and H₂S removal performance and saturated duration. The raw biogas contains by averaged of 61.10% CH₄, 37% CO₂, 0.90% H₂S, 0.30% O₂ and 0.70% others feeding through the biogas purifier with flowrate of 0.04 kg s⁻¹. The output of CH₄ for MEA solution of 1, 1.50, 2, 2.50 and 3 mol.L⁻¹ were 91.30%, 91.80%, 92.10%, 90.40% and 92.50% respectively. The effect of high concentration obtained the high removal performance but the saturated duration was not different compare to the low concentration.

Keywords: Biogas purification, CO₂ removal, H₂S removal, mono-ethanolamine

©2020 Sakon Nakhon Rajabhat University reserved

1. Introduction

Biogas is produced from anaerobic degradation of organic materials by acetogens and methanogens bacteria. Raw biogas consists of methane (CH₄), carbon dioxide (CO₂), hydrogen sulfide (H₂S), moisture and trace gases such as oxygen, hydrogen ammonia and so on, by 45 – 60% CH₄, 30 – 40% CO₂, 1 – 5% O₂, 0.10 –1% H₂S and trace gasses 0.10 – 2%. Methane is one of GHG when released to atmosphere with 28 times harmful power of CO₂. The utilization of impurities biogas obtains low calorific value and damages device due to CO₂ is an incombustible gas, while H₂S mixing with water to be sulfuric acid that is corroded metal. The removal of CO₂ and H₂S is importance in the improving biogas with increasing CH₄ content above 96% for vehicle fuel [1]. The high purity methane is not only high calorific value but also high the knock resistance in internal combustion engine. Biogas upgrading methods are eliminated mixed gases from methane by physical, chemical and biological technologies due to its properties.

Mono ethanolamine (MEA) solution used for biogas purification in O.I. Maile, et al. [2 – 3] showed that CO₂ removal efficiency and absorption rate were high according to high concentration of MEA. According to Apichat Srichat, et al. [4] experiments using MEA solution with concentrations of 0.10 and 0.20 mol L⁻¹, the flowrate of solution to biogas flowrate (L/G ratio) and solution concentration affected to CH₄ purifying. The higher L/G ratio obtained the higher yield of CH₄ concentration. The removal of CO₂ in biogas using MEA comparing to sodium hydroxide solution (NaOH) and aqueous

ammonia by Maizerwan Mel, et al. [5]. MEA solution was proven to be the good solvent by eliminating CO₂ less than 5% at the ambient condition. The CO₂ removal efficiency depended on temperature and concentration of absorption solvent.

The cost-effectiveness for biogas purification in a large scale is economically. The appropriate apparatus for biogas upgrading in farm scale or small scale is rare. This study attended the removal of CO_2 and H_2S using different concentrations of MEA solution with a small apparatus for utilization to fan driving engine in an animal farm. The concentrations range from 1 to 3 mol. L^{-1} were compared the removal efficiency and saturated duration.

2. Materials and Methods

Materials

According to the characteristics of biogas as compound gases, the separation principle is based on different properties of CH₄ to CO₂, H₂S and others in fact of physical and chemical properties.

The physical technology

The pressure-swing adsorption (PSA) separates CO₂ and H₂S by solid adsorption under high pressure environment. Because of CH₄ molecule is larger than CO₂ and H₂S molecules, the mixture gases are adsorbed onto the porous adsorbents. The most commonly used adsorbents are zeolite, activated carbon, activated charcoal, silica gel and synthetic resins [6].

Cryogenic separation, this uses different temperatures to separate the mixture gases from CH₄. The different melting points of CH₄ and mixture gases (CO₂ and H₂S) by -182° C to -57° C for CO₂ and -82° C for H₂S can be separated under cooled at elevated pressure condition. This technique obtains high purity biogas about 99% CH₄ but consumes high energy to operate.

Membrane separation, a microporous hydrophobic membrane is used as its selective permeability property. The gas-liquid separation that liquid absorbs CO_2 and H_2S molecules flowing encounter direction through the membranes, while the gas—gas separation operates at high pressure. According to CH_4 , CO_2 , H_2S and traced gases in biogas containing different sizes of gas molecules, the permeability through the membrane are different. The separation process is run in high pressure and high temperature conditions. This technique obtains 98% CH_4 purity at high pressure 20 – 40 bar and 92 – 97% CH_4 purify at lower pressure 8 – 10 bar [7].

Hydrate formation, the process works on the equilibrium of the gas components between gaseous phase and hydrate phase of CO₂. The purity obtains CH₄ above 75% but the process consumes high energy and high CH₄ loss.

The chemical technology

Water soluble characteristics of CH₄ comparing to CO₂ and H₂S is poor, so that CO₂ and H₂S are separated. The water solubility of CH₄ is 26 times lower at 25°C than that of CO₂. The method for separating mixture gases and CH₄ in chemical technology provides by chemical reactivity. Chemical absorption involves formation of reversible chemical bonds between the solute and the solvent.

Water scrubbing and organic scrubbing, the different solubility of biogas components is employed in principle. The absorbed biogas components are physically bound to the scrubbing liquid. The different binding force of non-polar molecule CH₄ and more polar molecule CO₂ and H₂S can be separated in selective solvents. An organic solvent such as methanol can be employed in CO₂ removal while polyethylene glycol can be separated H₂S dues to its higher solubility in polyethylene glycol than CH₄ [6].

Chemical absorption, hydrocarbon compound with double bond such as CH₄ is non-polar molecule that is less reactivity with the polar solvents than that of CO₂ and H₂S. The reaction sensitivity of CO₂ and H₂S to amines solutions and alkali aqueous solutions is higher. So, amine solutions can be absorbed CO₂ and H₂S separating from biogas obtaining purity over 90% CH₄ [2]. Chemical absorption of H₂S using iron rust (iron oxide, Fe₂O₃) that reaction of H₂S and Fe₂O₃ forming Fe₂S₃ by equation

$$Fe_2O_3 + 3H_2S \rightarrow Fe_2S_3 + 3H_2O$$
 (1)

Reaction of CO₂ and H₂S with MEA solution is complex expressing respectively in equations [8].

$$CO_2 + 2RNH_2 \leftrightarrow RNHCOO^- + RNH_3^+$$
 (2)

$$RNH_2 + H_2S \leftrightarrow RNH_3^+ + HS^- \tag{3}$$

where R is an organic functional group namely ethanolic group, HOC_2H_4 represented by $HO-CH_2-CH_2-$.

The biological technology

The removal of CO₂ and H₂S by bacterial species takes place in specific conditions of oxygen lacking, pH and light. There are chemotrophic thiobacteria and phototrophic bacteria. Chemotrophic thiobacteria can purify H₂S in both aerobic and anaerobic conditions, while phototrophic bacteria provides in the presence of light and CO₂. Thiobacillus genus bacteria is well in a large scale for H₂S removal. The advantage of biological methods are low energy requirement, mild conditions and the elemental sulfur byproduct, but disadvantages with nutrients added for growing bacteria and needed small amount of O₂ and N₂. The removal efficiency for H₂S depended on activity of bacteria obtaining over 80% CH₄ purify in generally. This technology needs a large scale of biogas consumption due to the cost is high.

Method

A small packed column of CO₂ and H₂S scrubbing using MEA solution, iron rust, and silica gel was used for the biogas improving process. Fig. 1 shows a diagram of biogas improving process respectively by H₂S elimination, CO₂ elimination, and moisture adsorption. Raw biogas flows into the iron rust column for H₂S scrubbing and then passing through the MEA column for absorbing CO₂, finally moisture content will be adsorbed by silica gel column. The first two stages are chemical absorption technique and last one is physical adsorption technique. The packed column capacity contained an MEA solution for 1.50 L, iron rust 1.20 kg, and silica gel 1.50 kg (Fig. 2). The concentrations of MEA solution are 1, 1.50, 2 2.50, and 3 mol L⁻¹. The raw biogas was obtained from the 50 m³-fixed dome reactor using pig's manure passing through the packed columns and then feeding to the engine-powered for the air blower of the evaporative conditioning system. The raw biogas was measured as mixed gases of CH₄, CO₂, H₂S, and O₂ at flow rate averaged of 0.04 kg s⁻¹ under real conditions of biogas utilization that it is high at the beginning and low at the end. The CO₂ removal at different concentrations of the MEA solution was compared in the same amount of iron rust and silica gel.

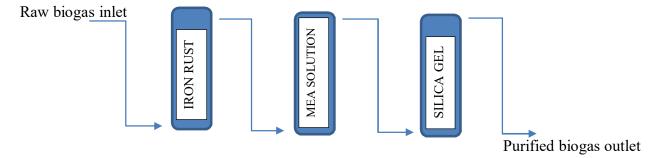


Fig. 1 Schematic of biogas improving by H₂S, CO₂ eliminating and moisture adsorption

Fig. 2 A small biogas purifier used for upgrading the engine fuel in the evaporative conditioning system

There are 4 columns of the small biogas purifier. The chemical absorption of H₂S and CO₂ were governed by iron rust and MEA solution respectively. Water scrubbing column was connected next to MEA column and finally physical adsorption by silica gel for deceasing moisture content. The saturated duration of biogas materials for CO₂, H₂S, and moisture eliminations was also determined from its output percentages of gases outlet were as same purify as the gases inlet with different MEA solution concentrations. The saturated duration represents the timing of purified materials utilization. It was predicted by linear regression analysis.

3. Results and Discussion

Components of biogas inlet consist by averaged of 61.10% CH₄, 37% CO₂, 0.90% H₂S, 0.30% O₂, and 0.70% others. Removal of CO₂, H₂S, and moisture content in biogas using MEA solution, iron rust, and silica gel was performed under the real condition of biogas utilization for 2-strokes engine fuel. Inlet and outlet biogas from the packed columns using the biogas analyzer were measured including CH₄, CO₂, H₂S, O₂, and others comparing different concentrations of MEA solution. Table 1 shows the high concentration obtained the higher purity of CH₄ according to higher CO₂ removal same as by O. I. Maile et al. [3] that MEA concentration of 10%, 20% and 30% obtained CH₄ purified of 76%, 78% and 85% respectively, corresponding to W. Kamopas et al. [9] and Ye et al, [10]. The concentration of MEA for 2 mol L⁻¹ obtained the higher biogas purify than that of 1 mol L⁻¹ [9]. It is not only the higher CO₂ absorption but also the higher absorption rate [10]. The performance of purity for the concentration of 3 mol L⁻¹ is higher than the concentration of 1 mol L⁻¹. The decreasing of %CH₄ content in Fig. 2 represented the performance of biogas improving for different MEA solution concentrations for 9 days of experiments. The CH₄ purifying of the high concentration was a steeper decline than the low concentration. The saturated duration of each concentration of MEA solutions predicted by linear equations shows in Table 1 that the concentration of 1 mol L⁻¹ has the longest. The outlet percentages of CH₄ were above 90% due to the inlet percentage of about 61%. The saturated duration for the concentration of 1, 1.50, 2, 2.50, and 3 mol L⁻¹ using linear regression analysis were 16.60, 10.20, 10.80. 11.10, and 10.60 days respectively. The CO₂ removal performance for the concentration of 3 mol L⁻¹ was 13.70% above the concentration of 1 mol L⁻¹ comparing to using a concentration of 0.20 mol L⁻¹ higher than 0.05 mol L⁻¹ [9].

Table 1 Biogas contents (%v/v) obtained with different concentrations of MEA solution volume of 2 L

MEA	Biogas Inlet (%VV ⁻¹)				Biogas Outlet (%VV ⁻¹)				Saturated
WIEA	CH ₄	CO ₂	H ₂ S	O_2	CH ₄	CO_2	H ₂ S	O_2	duration equation
$1.0 \text{ mol } \mathrm{L}^{-1}$	61.50	36.40	0.90	0.30	91.30	7.30	0.04	0.40	$y = -2.62x + 104.86 (r^2 = 0.88)$ saturated 16.6 days
$1.5 \text{ mol } L^{-1}$	62.00	36.10	0.90	0.40	91.80	7.20	0.04	0.30	$y = -4.05x + 102.55 (r^2 = 0.97)$ saturated 10.2 days
$2.0 \text{ mol } L^{-1}$	61.80	37.10	0.90	0.30	92.10	6.90	0.05	0.30	$y = -4.10x + 105.63 (r^2 = 0.96)$ saturated 10.8 days
$2.5 \text{ mol } L^{-1}$	60.40	37.50	0.90	0.30	90.40	8.50	0.07	0.30	$y = -4.03x + 106.13 (r^2=0.98)$ saturated 11.1 days
3.0 mol L ⁻¹	59.90	37.90	0.80	0.30	92.50	6.30	0.07	0.30	$y = -4.14x + 105.09 (r^2=0.99)$ saturated 10.6 days

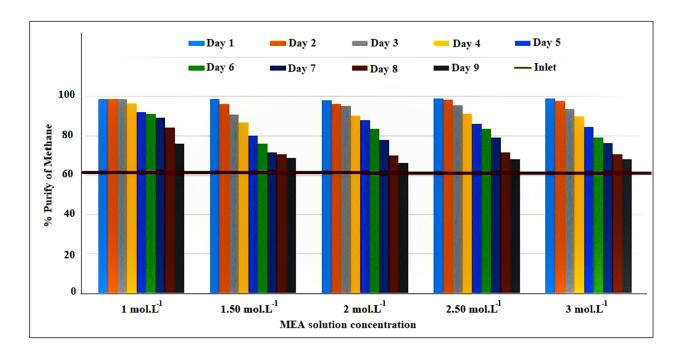


Fig. 3 The capacity of CH₄ purity using different concentrations of MEA solution for 9 days

4. Conclusion

Biogas utilization in engine and burner require the high purified methane due to its calorific value and non-corrosion. The improvement of biogas by removal CO_2 and H_2S using MEA solution with different concentrations of 1-3 mol L^{-1} obtaining the purified CH_4 maximum of 92.40%. The raw biogas contains by averaged of 61.10% CH_4 , 37% CO_2 , 0.90% H_2S , 0.30% O_2 and 0.70% others. After passing through the biogas purifier with flowrate of 0.04 kg s⁻¹, for MEA solution of 1 mol L^{-1} obtained 91.70% CH_4 , 7.30% CO_2 , 0.04% H_2S and 0.40% O_2 , and the saturated duration by 16.60 days. The

MEA solution concentration of $1.50 \text{ mol } L^{-1}$ obtained 91.80% CH₄, 7.20% CO₂, 0.04% H₂S and 0.30% O₂, and the saturated duration by 10.20 days. The MEA solution concentration of $2.\text{mol } L^{-1}$ obtained 92.10% CH₄, 6.80% CO₂, 0.04% H₂S and 0.30% O₂, and the saturated duration by 10.80 days. The MEA solution concentration of $2.50 \text{ mol } L^{-1}$ obtained 90.40% CH₄, 8.60% CO₂, 0.04% H₂S and 0.30% O₂, and the saturated duration by 11.10 days. The MEA solution concentration of $1.50 \text{ mol } L^{-1}$ obtained 92% CH₄, 6.30% CO₂, 0.04% H₂S and 0.30% O₂, and the saturated duration by 10.60 days respectively. The CO₂ removal performance for the concentration of $3 \text{ mol } L^{-1}$ was higher than that of $1 \text{ mol } L^{-1}$ by 13.70%. It was found that the higher concentration obtained the high purity performance for CO₂ absorption but the H₂S purity performance was quite the same, while the saturated duration was small fluctuated. The saturated duration could be tested in condition of liquid/gas ratio.

5. Acknowledgement

The author would like to thank to Science Center, Loei Rajabhat University for equipment supporting. Special thanks to National Research Council of Thailand (NRCT) for the financial supporting in Direct Grant Project.

6. Reference

- [1] J. Cebula, Biogas purification by sorption techniques, ACEE. 2 (2009) 95 103.
- [2] O.I. Maile, H.E. Muzenda, H. Tesfagiorgis. Chemical absorption of carbon dioxide in biogas purification, Procedia Manuf. 7 (2017) 639 646.
- [3] O.I. Maile, H. Tesfagiorgis, E. Muzenda. The potency of monoethanolamine in biogas purification and upgrading, SAJCE. 24 (2017) 122 127.
- [4] A. Srichat, R. Suntivarakorn, K. Kamwilaosak. A development of biogas purification system using Calcium hydroxide and Amine solution, Energy Procedia. 38 (2017) 441 445.
- [5] F.R.H. Abdeen, M. Mel, M.S. Jami, S.I. Ihsan, A.F. Ismail. Improvement of biogas upgrading process using chemical absorption at ambient conditions, J. Teknol. 80 (1) (2018) 107 113.
- [6] O.W. Awe, Y. Zhao, A. Nzihou, D.P. Minh, N Lyezko. A review of biogas utilization, purification and upgrading technologies, WASTE BIOMASS VALORI. Springer. 8(2) (2017) 267 283.
- [7] B.F. Hulteburg, C. Persson, T. Tamm. Biogas upgrading-review of commercial technologies, SGC Rapport. 83 (2013) 270 277.
- [8] P. Kasikamphaiboon, J. Chungsiriporn, C. Bunyakan, W. Wiyaratn. Simultaneous removal of CO₂ and H₂S using MEA solution in a packed column absorber for biogas upgrading, SJST. 35 (6) (2013) 683 691.
- [9] W. Kamopas, A. Asanakham, T. Kiatsiriroat. Absorption of CO₂ in biogas with amine solution for biomethane enrichment, J. Eng. Technoi.Sci. 48(2) (2016) 231 241.
- [10] C. Ye, G. Chen, Q. Yuan. Process characteristics of CO₂ absorption by aqueous monoethanolamine in a microchannel reactor, Chin. J. Chem. Eng. 20 (2012) 111 119.