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Abstract

The objective of this research was to compare statistical imputation methods: 1) Discriminant
Analysis (DA), 2) Decision Tree, and 3) Mean. The criteria for the efficiency comparison was estimated by
Mean Magnitude of Relative Error (MMRE). The data used for the study were extracted from 800 sets of the
mammographic mass database of UCI Machine Learning Repository Data Set. The research processes
included: 1) Divided the data of 800 sets into two groups (95% Reliability based on Yamane’s formula,

resulting in 533 sets of learning data and 267 sets of testing data), 2) Used the data of learning sets to form an
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equation for finding the substitution of incomplete values provided, 3) Replaced the missing values of the
equation with the data of testing sets, and 4) Computed Magnitude of Relative Error (MRE) and Mean
Magnitude of Relative Error (MMRE) for each of 3 methods. In summary, it was found that the best
approaches for calculating MMRE ranged from 1) Discriminant Analysis, 2) Decision Tree, and 3) Mean
(26.56%, 33.30%, 63.27%) respectively. Discriminant Analysis, therefore, was appropriate approach for data
that could be identified correlation and had the high degree of dispersion in order to predict the best results for

missing values.
N
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Descriptive Statistics
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