Using Neural Networks for Sustainable Land Use Prediction in Sumbawa Regency, Indonesia

Main Article Content

Muhammad Ramdhan
Rudhy Akhwady
Taslim Arifin
Dini Purbani
Yulius
Dino G. Pryambodo
Rinny Rahmania
Olivia Maftukhaturrizqoh
Abdul Asyiri
Syamsul Hidayat
Arya Ningsih
Sadad

Abstract

Agriculture is vital to Sumbawa Regency's economy, with key activities such as rice cultivation, corn production, onion farming, and cattle rearing. This study applies artificial neural networks (ANN) to predict land cover changes, focusing on agricultural land expansion. Using land cover datasets from ESRI, digital elevation model, and topographical maps, we analyzed land cover changes from 2017 to 2023 and generated future projections for 2050 with the MOLUSCE plugin in qGIS. The predictive model achieved an 85% accuracy rate when comparing 2023 actual data with predictions. Results indicate a significant increase in agricultural land cover by 2050. The key finding is that over a long-term period, the simulation of land use and land cover (LULC) change in Sumbawa reveals an increase of crop areas in the Lunyuk and Labangka Districts. This study highlights the effectiveness of ANN in land cover prediction and emphasizes the need for sustainable practices to balance agricultural expansion. AI-driven insights can aid policymakers in opti-mizing resource allocation and ensuring long-term environmental and economic stability in Sumbawa Regency. Future research should refine models and incorporate additional factors for improved accuracy.

Article Details

How to Cite
Ramdhan, M., Akhwady, R. ., Arifin, T. ., Purbani, D. ., Yulius, Pryambodo, D. G., Rahmania , R., Maftukhaturrizqoh, O. ., Asyiri, A. ., Hidayat, S. ., Ningsih, A. ., & Sadad. (2024). Using Neural Networks for Sustainable Land Use Prediction in Sumbawa Regency, Indonesia. Applied Environmental Research, 46(3). https://doi.org/10.35762/AER.2024045
Section
Original Article

References

Mana A.A., Allouhi A., Hamrani A., Rehman S., el Jamaoui I., Jayachandran K., Sustainable AI-based production agriculture: Exploring AI applications and implications in agricultural practices. Smart Agricultural Technology, 2024, 7, 100416.

Mpanga I. K., Tronstad R., Guo J., LeBauer D. S., Idowu O. J., On-farm land management strategies and production challenges in United States organic agricultural systems, Current Research in Environmental Sustainability, 2021,3,(1),100097.

Haj F.A.E., Ouadif L., Akhssas A., Monitoring Land Use and Land Cover Changes Using Remote Sensing Techniques and the Precipitation-Vegetation Indexes in Morocco, Ecological Engineering & Environmental Technology, 2023, 24(1), 272–286.

BPS-Statistics Sumbawa Regency, SUMBAWA REGENCY IN FIGURES 2024, Volume 16, ISSN: 0215-5834, Publication Number: 52040.24001, Catalog: 1102001.5204, Sumbawa Regency, Indonesia, 2024, 529 p.

Abbas, Z., Yang, G., Zhong, Y., Zhao, Y., Spatiotemporal change analysis and future scenario of LULC Using the CA-ANN approach: a case study of the Greater Bay Area, China., Land, 2021, 10 (6), 584.

Bathe, D. K., Patil, N.S., Assessment of land use-land cover dynamics and its future projection through Google Earth Engine, machine learning and QGIS-MOLUSCE: A case study in Jagatsinghpur district, Odisha, J. Earth Syst. Sci., 2024, 133, 111.

El-Tantawi, A.M., Bao, A., Chang, C., Liu, Y., Monitoring and predicting land use/cover changes in the Aksu-Tarim River Basin, Xinjiang-China (1990–2030). Environ. Monit. Assess., 2019, 191, 480.

Kafy, A. -A., Abdullah-Al-Faisal, Rahman, M. S., Islam, M., Rakib, A. A., Islam, M. A., Sattar, G. S., Prediction of seasonal urban thermal field variance index using machine learning algorithms in Cumilla, Bangladesh. Sustainable Cities Soc., 2021, 64, 102542.

Khan A., Sudheer M., Machine learning-based monitoring and modeling for spatio-temporal urban growth of Islamabad. The Egyptian Journal of Remote Sensing and Space Sciences, 2022, 25, 541–550.

Reddy, C.S., Pasha, S.V., Satish, K.V., Unnikrishnan, A., Chavan, S.B., Jha, C.S., Diwakar, P.G., Dadhwal, V.K., Quantifying and predicting multi-decadal forest cover changes in Myanmar: a biodiversity hotspot under threat. Biodivers. Conserv., 2019, 28 (5), 1129–1149.

Arifin T., Amri S. N., Rahmania R., Yulius, Ramdhan M., Chandra H., Adrianto L., Bengen D. G., Kurniawan F., Kurnia R., Forecasting land-use changes due to coastal city development on the peri-urban area in Makassar City, Indonesia. The Egyptian Journal of Remote Sensing and Space Sciences, 2023, 26(1), 197–206.

Rahman, M.T., Esha, E.J., Prediction of land cover change based on CA-ANN model to assess its local impacts on Bagerhat, southwestern coastal Bangladesh. Geocarto Int., 2020.

Saputra, M.H., Lee, H.S., Prediction of land use and land cover changes for North Sumatra, Indonesia, using an artificial-neural-network-based cellular automaton. Sustainability, 2019, 11 (11), 3024.

Bhattacharya, R.K., Chatterjee, N.D., Das, K., Land use and Land Cover change and its resultant erosion susceptible level: an appraisal using RUSLE and Logistic Regression in a tropical plateau basin of West Bengal, India. Environ. Dev. Sustain., 2021, 23, 1411–1446.

MohanRajan, S.N., Loganathan, A., Manoharan, P., Survey on Land Use/Land Cover (LU/LC) change analysis in remote sensing and GIS environment: techniques and challenges. Environ. Sci. Pollut. Res., 2020, 27, 29900–29926.

Perovic, V., Jakšic, D., Jaramaz, D., Kokovic, N., Cakmak, D., Mitrovic, M., Pavlovic, P., Spatio-temporal analysis of land use/land cover change and its effects on soil erosion (Case study in the Oplenac wine-producing area, Serbia). Environ. Monit. Assess., 2018, 190 (675).

Achu, A., Thomas, J., Aju, C., Gopinath, G., Kumar, S., Reghunath, R., Machine Learning Modelling of Fire Susceptibility in a Forest-agriculture Mosaic Landscape of Southern India. Ecol. Inf., 2021, 64.

Potapov P., Hansen M. C., Pickens A., Serna A. H., Tyukavina A., TurubanovaS. Zalles V., Li X., Khan A., Stolle F., Harris N., Song X. P., Baggett A., Kommareddy I., Kommareddy A., The Global 2000-2020 Land Cover and Land Use Change Dataset Derived From the Landsat Archive: First Results, Front. Remote Sens., 2022, Vol. 3.

Sun J., Twine T. E., Hill J., Noe R., Shi J., Li M., Effects of Land Use Change for Crops on Water and Carbon Budgets in the Midwest USA, Sustainability, 2017, 9(2), 225.

Pete S., Peter J. G., Detlef V., Michael O., Petr H., Mark R., Jeremy W., Elke S.,Jessica B., Competition for land, Phil. Trans. R. Soc., 2010, B3652941–2957.

Foley, J., Ramankutty, N., Brauman, K., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell C., Ray, D.K., West, P.C., Balzer, C., Bennett, M. E., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman D., Zaks, D. P. M., Solutions for a cultivated planet, Nature, 2011, 478, 337–342.