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Abstract The aim of this study is to optimize the number of tube rows (Nrow) of crimped spiral 

fin–and-tube heat exchangers. Multipass parallel-and-counter cross-flow heat exchangers are 

used to study this topic. As the working fluids, ambient air was used at the air side, whereas 

hot water was used at the tube side. We demonstrated that the Nrow has no significant effect 

on the j and f factors, especially the optimal number of tube rows (Nrow) for crimped spiral 

fins with 3 and 4 rows, based on the  and  evaluation criteria. The major findings 

related to those effects are also described in this study. The results showed certain aspects of 

other effects for enhancing our understanding on effective heat-exchanger design. 
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1. Introduction 

Air-side heat-transfer performance is very important 
to heat exchanger (HX) design at a compact size, which 
is generally limited by the air-side resistance. Therefore, 
fin geometry and tube arrangements have been 
improved to enhance the heat transfer in heat 
exchangers. 

 A literature survey reveals that many 
researchers have studied extensively about how fin 
geometries and tube arrangements affect the air-side 
heat-transfer performance and flow characteristics of 
plate-and-circular-finned-tube HXs, as reviewed by 
Pongsoi et al. [1]. Moreover, there has a limited number 
of studies on the air-side performance of HX designs 
with conventional spiral fins [2-10], crimped spiral fins 
[11-13], L-footed spiral fins [14-16], and serrated 
welded spiral fins [17]. They showed that the 
conventional spiral fin is the foundation of other spiral 
fins, as seen in Fig. 1. Several of the spiral fin types 
differ from the conventional spiral fin mainly in terms 
of the fin base. In particular, crimped spiral fins have a 

sine shape, which increases the contact area between the 
fin base and tube surface as well as the turbulent flow. 
An  L - footed  spiral fin  can  protect  against  corrosion  
through the base of its (L-shaped) fin, whereas a welded  
spiral fin has lower thermal resistance than other fin 
types do but also high heat-transfer performance and 
pressure drop. In addition, according to the literature, the 
resulting air-side performance has significant effects on 
HX design, leading to improved fin geometry and tube 
arrangements. Designers must use the majority of these 
method-development experiments to enhance the 
understanding of effective HX design. In order to match 
the real applications, as a result, this study will focus on 
the optimal design of tube banks by using Wongwises’s 
research group and considering performance indexes, as 
reported in Pongsoi et al. [11-16] and Kiatpachai et al. 
[17]. Additionally, crimped spiral fin-and-tube HXs 
with 2-5 rows are studied using performance indexes for 
the optimal design of tube banks. This work also has 
guided Nrow for designing crimped, spiral-finned-tube 
HXs in industrial applications, which can be applied to 
future technology.  

(b) (c)(a)

Tube

Conventional spiral fin

Base of fin

Fig.1 Schematic diagrams for (a) conventional spiral-finned tubes, (b) tubes, and (c) conventional spiral fins  
[From Pongsoi et al. [1], with permission from Elsevier] 
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2. Data Reduction 

Fig.2 Schematic diagrams of the experimental apparatus [From Pongsoi et al. [13], with permission from Elsevier] 
 

An experiment was operated in a wind tunnel, 
as seen in Fig.2 The main components of the 
experimental apparatus are the spiral fin–and-tube HX 
(test section), data-acquisition system, instrument 
system, water flow loop, and air supply. The working 
fluids used for the experiment were air and hot water. 

Fig. 3 shows the crimped finned tube used for 
the experiment. The schematic diagrams of all 
parameters of the tested HXs are shown in Fig. 4 
Moreover, Table 1 provides details of the test samples.  

 

The relevant components and more detailed descriptions 
can be seen in a previous study [18]. For out experiment, 
the air and water flow rates and water temperatures were 
varied for testing at the steady state, as seen in Table 2. 
The NTU method and total thermal resistance are used 
for data reduction for UA product under steady-state 
conditions, which can be represented as follows: 
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Fig.3 Photos and schematic diagrams of the crimped spiral-finned tube[From Pongsoi et al. [11], with permission from Elsevier] 
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Fig.4 Crimped spiral-fin-and-tube HXs [From Pongsoi et al. [12], with permission from Elsevier]
 

Table.1 Detailed geometric parameters of the test 
samples 

 
 
Unit: mm  

 

Table.2 Experimental conditions 
 

Inlet-air dry-bulb temperature, OC 31.50.5 
Inlet-air frontal velocity, m/s 2-7 
Intel-water temperature, OC 55-70 
Water flow rate, LPM 12-14 

 

 

 

 

Table.3 Accuracy of the measurements 

 
Parameters Accuracy 
Inlet-air dry-bulb temperature, OC 0.1 
Pressure drop, Pa 0.5 
Intel-water temperature, OC 0.1 
Water flow rate, kg/s 0.4 

 

 

Table.4 Uncertainties of the derived experimental 
values 

Parameters 
Maximum 

uncertainties (%) 
Air-side heat transfer rate, Qo 5.0 
Water-side heat transfer rate, Qw 3.4 
Pressure drop, P 2.5 
Frontal velocity, Vfr 3.3 
Colburn factor, j 11.5 
Friction factor, f 13.0 

 

No. di do df PL PT ft nt fp 
Fin 

material 
Nrow 

1,2,3,4 13.5 16.35 35 35 40 0.5 9 6.3 Al 2,3,4,5 
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Equations (2)-(9), for one mixed fluid and one unmixed 
fluid, were used to determine ho, as follows:  
 For a multipass parallel cross-flow with Nrow= 
2, 3, 4, and 5 or higher: 

 

(Nrow = 2), 

    

(2) 

 
(Nrow = 3) 

 

(3) 

(Nrow = 4), 
 

 (4) 

(Nrow = 5 or  ), 

   
 (5) 

For multipass counter cross-flow with Nrow= 2, 3, 4 and 
5 or more: 
(Nrow = 2), 

  
(6) 

 
(Nrow = 3),

  

 

(7)  

(Nrow = 4), 

  (8) 

(Nrow = 5 or  ),  

 

   

(9) 

 The heat capacity-rate ratio (C* = Cmin/Cmax ) 
represents Cc /Ch or Ch /Cc : 

 

 for Nrow = 2, 3, 4 and 5             (10) 
 

 The radial fin efficiency is proposed by 
Gardner [19]: 
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The Colburn j factor presents the heat-transfer 
performance of forced convection: 
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 The 3 performance indexes are presented to 
determine the optimal number of tube rows, as reported 
in [13]. The values of  and  are determined as 
follows in (14)-(16): 
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       Fig.5 Schematic diagram of the heat-exchanger algorithm for multipass parallel cross-flow, multipass counter 

cross-flow, and multipass parallel and counter cross-flow (Nrow = 2, 3, 4, and 5)
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The HX performance index is calculated as follows: 
= (Qave/P)HX   (14) 

 

The system-performance index is calculated as follows: 
= (Qave/P)Sys    (15) 

 

The dimensionless system-performance index is 
calculated as follows: 

 = (Qave/Wp)Sys,     (16) 
 

in which Wp is the fan power. 
 The pumping power of fan was determined Kays 
and London [20], as described in more detail in [13], as 
follows: 

m

minc
p

ΔPAG
W


                                     (17) 

3. Results and Discussion 

 The ANSI/ASHRAE 33 Standards [21] were used 
to identify the energy balance, which was |Qa-Qw| / Qave. 
< 0.05 Moreover, the accuracy and uncertainties of the 
derived experimental values are provided in Tables 3 
and 4, respectively. 

 
Fig.6  Effect of number of tube rows on the j and f 

factors of crimped spiral fin and tube heat-exchangers 
at Tw,in= 70 °C and mw,in= 0.2 kg/s. 

Fig.6 shows the effects of Nrow on heat-transfer 
performance and flow characteristics in term of the j and 
f factors. The j and f factors decrease as Redo increases 
(3,000-15,000). 
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(b) 
Fig.7 Effect of number of tube rows on the heat-

exchanger performance index  at different inlet-water 
temperatures: (a) 55 °C/12 LPM and (b) 70 °C/12 LPM 
 

This might be because the downstream turbulence is 
shed, passing the finned-tube HX and leading to good 
mixing at the air side. In contrast, Nrow has a significant 
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effect on flow characteristics, as seen in terms of f. The 
effect of blocking the flow area increases with the 
number of tube rows. 
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(b) 

Fig.8 Effect of number of tube rows on the heat-
exchanger performance index at different water flow 

rates: (a) 60 °C/12 LPM and (b) 60 °C/14 LPM 
 

 The analysis of Nrow for HX design is 
presented using 3 performance indexes [13]:  and 
, as expressed in Eqs. (14), (15), and (16), respectively. 
Figs. 7 and 8 illustrate the HX performance index () 
with 2-5 tube rows at various temperatures and a flow 
rate of water and air frontal velocity of 2-5 m/s. The 
results demonstrate that when Nrow is 3 or 4 rows (the 
peak values) is higher than that when Nrow is 2 or 5 rows.  

 
Fig.9 Axial fan-performance curve (P-Q fan curve) 

with system lines of L-footed spiral fin-and-tube heat 
exchangers with various numbers of tube rows at  

Tw,in = 70 °C and water flow rate of 12 LPM 
 

Thus, Nrow of 3 and 4 rows was used for optimum design 
based on the HX performance index ().  
 Fig. 9 illustrates the P-Q curve of axials fan 
with the system lines of HXs having 2-5 tube rows. The 
P-Q curve A to C of a commercial fan is plotted to 
determine the cutting line between the fan curve and the 
HX’s system line, i.e., the operating point. The 
interception of the 2 operating points shows the average 
heat transfer rate and pressure drop when Nrow is 3 and 
with fan A. The value  is the ratio of Qave with the P 
at the operating point, as shown in Fig. 9. 
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 Fig.10 Effect of the number of tube rows subjected to 
the fan curve on the performance index at the 

optimum fan-operating point 
(Tw,in = 70 °C and water flow rate of 12 LPM) 
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 Fig.11 Effect of number of tube rows subjected to 
pumping (fan) power on the performance index  at 
the optimum fan-operating point (Tw,in = 70 °C and 

water flow rate of 12 LPM) 
 

 
 
 
 

       The influence of number of tube rows for crimped 
spiral fins in relation to the fan curve on  at the 
optimum fan-operating point is illustrated in Fig. 10. 
The system-performance index () increases when Nrow 
increases to 2 to 4 rows, but Nrow = 5 has a decreased , 
as seen in Fig. 10.  The plots of the dimensionless 
system-performance index () shown in Fig. 11 show 
the same trend as that of . These performance indexes 
are compared for Nrow of 2, 3, 4, and 5 rows, as seen in 
Table .5 
 

Table.5 Characteristics of Nrow on the performance 
indexes 
 

Nrow    

2 Low Low Low 
3* High* Intermediate* Intermediate* 
4* High* High* Intermediate* 
5 Low Intermediate High 

 
Note: *Optimum condition 
 

We confirmed that Nrow of 3 and 4 rows was 
significantly better than other numbers of tube rows 
were, which we investigated by the intersection method, 
as shown in Fig. 12. A previous study, Pongsoi et al. 
[13], noted that the optimum fin pitch was 4.2 mm 
(crimped spiral fin), making it suitable for effective HX 
design. 
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1

2

3, 4

 The intersection of sets 1 , 2  and 3 

are 3 and 4 (number of tube row)

2

3

rowN

2 , 5

rowN

2
rowN

3,4

5

rowN

Fig.12 The levels of 3 performance index sets and ) as the grouping of the number of tube rows 
 

4. Conclusion 
 To summarize, the optimal design for a crimped 
spiral fin–and–tube HX involves the effect of Nrow (2-5 
rows), which was considered by using 3 performance  
indexes  and ). The findings were as follows: 
 

1.  Nrow affects the heat-transfer performance 
and flow characteristics of an optimal HX 
design.  

2. The value of Nrow for crimped spiral fin–and-
tube HXs is summarized for industrial 
application design, i.e., Nrow of 3 or 4 rows at 
a high Reynolds number. 

3. The most effective design of a spiral fin–and-
tube HX is challenging to discover, create, 
design, investigate, and apply to innovation 
technology, to lead to new types of HXs. 
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Nomenclatures 
A  area, m2 

Amin   minimum free flow area, m2 

Ao   total surface area, m2 
AP   cross-sectional or profile area of fin, m2 

Al   aluminium 
cP   specific heat at constant pressure, J/(kg.K)  
C   heat capacity rate, W/K 
C*   capacity rate ratio, dimensionless 
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Cc   cold-fuid capacity rate, W/K 
Ch   hot-fluid capacity rate, W/K 
Cu   copper material 
df   outside diameter of finned tube, m 
di   tube inside diameter, m 
do   tube outside diameter, m 
f   Fanning friction factor 
fp   fin pitch, m 
ft   fin thickness, m 
Gc  mass flux of the air based on minimum free     

flow area, kg/m2.s 
H   height, m 
HX   heat exchanger 
h   heat transfer coefficient, W/(m2.K) 
I0   modified Bessel function solution of the first 

  kind, order 0 
I1   modified Bessel function solution of the first 

  kind, order 1 
j   Colburn factor 
k   thermal conductivity, W/(m.K) 
K0  modified Bessel function solution of the 

second kind, order 0 
K1  modified Bessel function solution of the 

second kind, order 1 
L   length, m 
LPM   litre per minute 
m    mass flow rate, kg/s;  
   fin performance parameter, m-1 

Nrow   number of tube rows 
NTU   number of transfer units, dimensionless 
PL   longitudinal tube pitch, m 
Pr   Prandtl number 

PT   transverse tube pitch, m 

Q    heat transfer rate, W 

or    radius of tip fin, m 

ir    radius of base fin, m 
R   radius function in terms of the radius ratio, 

  dimensionless 
Redi  Reynolds number based on tube inside 

diameter  
Redo  Reynolds number based on tube outside 

diameter 
T   temperature, oC 
Ta   air temperature, oC 
Tw   water temperature, oC 
U   overall heat transfer coefficient, W/(m2.K) 
Vfr   frontal velocity, m/s 
Vmax  maximum velocity across heat exchanger, 

m/s 

Greek symbols 
    heat exchanger effectiveness 
    fin efficiency 

o    overall surface effectiveness 
    density, kg/m3 

    contraction ratio of cross-sectional area 
    dynamic viscosity of air, Pa.s 
    combination of terms, dimensionless; 
    radius ratio 

P   pressure drop, Pa 

   heat exchanger performance index, W/Pa 
   system performance index, W/Pa 
   dimensionless system performance index, 

 dimensionless 

Subscripts 
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1   air-side inlet 
2  air-side outlet 
a   air 
ave   average 
b   base 
c   multipass counter cross flow or cold fluid 
f   fin 
fr   frontal (LxH) 
h   hot fluid 
i   tube-side 
in   inlet 
m   mean value 
max   maximum 
o   air-side 
p   multipass parallel cross flow 
pc   multipass parallel-and-counter cross flow 
out   outlet 
t   tube 
w   water 
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