
วารสารวิชาการด้านวิทยาศาสตรแ์ละเทคโนโลยี   Journal of Science and Technology 
ปีท่ี 5 ฉบับท่ี 1 มกราคม – ธันวาคม 2565  Vol.5 No.1 January – December 2022 

44 

 
An Experimental Comparison of SES, DES, TES, ARIMA, and LSTM Algorithms 

for Short Time Series Prediction 

ภูมิพัฒน์ ดวงกลาง1 และ ชัญญาวัจน์ สถิตภัทรสมบัติ2 

Phummipat Daungklang1 and Chanyawat Sathidbhattarasombad 2 

  

 Received : January 21, 2022 
Revised : March 22, 2022 

Accepted : March 23, 2022  
Abstract 

 A time series is a sequence of observations which are collected over a period: 
Hours, days, months, or years. There has been an assumption that the dependence of 
successive observations in time series is probable to exist. By means of time series analysis, 
this dependence is examined to discover a pattern utilised to prepare a prediction, and the 
prediction is one of various common objectives which can be achieved using time series 
analysis. Fortunately, time series analysis has been a topic of interest among academics for 
many decades and quite different algorithms or models for the prediction task have 
already been at our disposal. These algorithms are either well-established statistical ones 
or based on approaches of machine learning. In this paper, an experimental comparison of 
five different algorithms (simple exponential smoothing (SES), double exponential 
smoothing (DES), triple exponential smoothing (TES), autoregressive integrated moving 
average (ARIMA), and long short-term memory (LSTM)) was carried out using 10 examples of 
short time series to examine the performance of the selected algorithms over the task of 
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time series prediction. The experimental results suggest that TES and seasonal ARIMA are 
the most appropriate to be used for time series with clear trend and seasonality. However, 
LSTM is the most appropriate to be used for time series without trend and seasonality. 
 
Keywords: Short Time Series Analysis, Exponential Smoothing, ARIMA, LSTM 
 
1. Introduction 
  There have already been plenty of different definitions of time series. We simply 
state that  a time series as a sequence of observations which are taken sequentially in time 
[1]. In our life, many sets of data appear as time series: a country’s unemployment rate, 
the prices of a cryptocurrency, a city’s electricity consumption, the number of the world’s 
population, and so on. The observations can be made, for instance, daily, weekly, 
quarterly, monthly, or yearly, depending on a proposed frequency of data collection. 
Examples of time series exist in several different fields such as economics, finance, industry, 
meteorology, health, and so on. There has been assumed that a time series is affected by 
four main components of which a time series is supposed to consist, and which can be 
extracted from the observed data, namely trend, cyclical, seasonal and irregular 
components [2]. 
 

 
Figure 1  Illustration of Main Time Series Components [3]. 

 
 A time series is called a short time series if it consists of only a few numbers of 
observations. Dealing with short time series can have benefits in practice because tasks or 
applications in the real life, in which short time series possibly exist, can be found in 
various disciplines, for instance, biomedicine (e.g. analysing gene expression over a short 
time period), economics (e.g. retail of collection at a clothing store) etc. [4, 5].  
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One of the purposes of “understanding time series more” is to find out from a time 

series whether any “pattern” is discovered which can be utilised to prepare a prediction or 
forecast. This can be achieved by time series analysis. Fortunately, time series analysis has 
been a topic of interest among academics for many decades and quite different algorithms 
for the prediction task have already been at our disposal. These algorithms are either well-
established statistical ones or based on approaches of machine learning. 

This paper proposes an experimental comparison of traditional statistical time series 
prediction algorithms and LSTM algorithm for 10 short time series each of which consists of 
120 observations (100 for training and 20 for prediction evaluation). For the comparison, we 
will use the mean absolute percentage error (MAPE) as prediction evaluation metric.  
 
2.  Related Work 

To analyse time series, many mathematical algorithms are applied. In many 
publications, statistical methods are also used among these methods. Besides, it is also 
noted that statistical methods can be exploited for short- and medium-term prediction 
problems. Thus, several time series prediction models were developed from statistical 
methods, such as autoregressive integrated moving average models (ARIMA) [7, 8], 
exponential smoothing algorithms [4, 9], etc.  

Moreover, many new time series analysis approaches have been developed using 
machine learning algorithms to build a time series prediction model. Machine learning 
algorithms such as support vector machines (SVM) [10], and deep learning algorithms such 
as long short-term memories (LSTM) [11] have gained popularities with their applications in 
many fields and been used in many domains, and time series prediction has of course 
been among these domains. 

 
3. The Methods of Research 
 3.1 The Data 
   All the time series using for our work were acquired from [12] .  Each time 
series was made a short time series, that is, it was edited, such that only 120 observations 
were contained in the series. Each time series was divided into a training set and an 
evaluation set. The training set was used for training (fitting) the model. And the evaluation 
set was used for testing the model for prediction accuracy. The training set consisted of the 
first 100 observations, while the last 20 observations constituted the evaluation set.  



Royal Thai Naval Academy Journal of Science and Technology  Vol.5 No.1 January – December 2022 

47 

 
 3.2 The Algorithms (Models) of Interest 
  3.2.1 Autoregressive Integrated Moving Average Model  
   Two submodels are involved in ARIMA models, namely autoregressive (AR) 
models and moving average (MA) models. AR models use past 𝑝 observation values to 
predict the future value of a variable which is modelled as a linear combination of these 
past 𝑝 values. Besides, a random error at a period 𝑡 (white noise) 𝜀𝑡 is involved in this 
linear combination, too [2, 13]. Mathematically, an AR model of order 𝑝, denoted by AR(p), 
models the current value at a period 𝑡, denoted by 𝑦𝑡, as 

𝑦𝑡 = 𝜀𝑡 + ∑ 𝜙𝑖
𝑝
𝑖=1 𝑦𝑡−𝑖, 

   where  𝑦𝑡−1, …, 𝑦𝑡−𝑝 are the past 𝑝 values and all 𝜙𝑖  are the weight 
parameters which are to be estimated from the data. The term of autoregressive indicates 
that it is a regression of the variable against itself [13]. 
 

 
Figure 2  Plots of the Examined Time Series.
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   where  𝑦𝑡−1, …, 𝑦𝑡−𝑝 are the past 𝑝 values and all 𝜙𝑖  are the weight 
parameters which are to be estimated from the data. The term of autoregressive indicates 
that it is a regression of the variable against itself [13]. 
   While AR(p) models apply past values to predict the future value of a variable, 
moving MA models use the past 𝑞 prediction errors. An MA model of order 𝑞, denoted by 
MA(q) models the current value at a period 𝑡, denoted by 𝑦𝑡, with the white noise 𝜀𝑡 as 

𝑦𝑡 = 𝜀𝑡 + ∑ −𝜃𝑗
𝑞
𝑗=1 𝜀𝑡−𝑗 , 

   where  𝜀𝑡−1, …, 𝜀𝑡−𝑞 are the past 𝑞 prediction errors and all −𝜃𝑗  are the 
weight parameters which are to be estimated from the data. 
   Combining an AR(p) model, an MA(q) model, and the notion of differencing 
which is the progress which makes non-stationary time series stationary (we say that a time 
series is stationary if its probabilistic properties, such as mean, variance, autocorrelation, 
etc., do not change over time), by calculating the differences of consecutive observation 
values [13], we have an ARIMA model with differencing order 𝑑, denoted by ARIMA(p,d,q), 
mathematically written as 

𝑦𝑡
𝑑 = 𝜀𝑡 + ∑ 𝜙𝑖

𝑝
𝑖=1 𝑦𝑡−𝑖

𝑑 + ∑ −𝜃𝑗𝜀𝑡−𝑗
𝑞
𝑗=1 . 

   To determine the differencing order 𝑑, there is a most used statistical method 
at our disposal called the augmented Dickey Fuller (ADF) test which tests whether a time 
series is stationary or not [14]. Basically, the ADF test is a statistical significance test which 
involves a hypothesis testing (“reject/accept the null hypothesis”) with a computed test 
statistic and p-value. The null hypothesis of the ADF test is that there is no stationarity in 
the given time series. If the p-value of the test is below the significance level 𝛼 (most 
commonly 𝛼 = 0.05), then the null hypothesis is rejected, and it can be inferred that the 
given time series has already been stationary, that is, 𝑑 = 0. In this case, no differencing is required. 
   Unfortunately, the major disadvantage of ARIMA (from now on, we call it 
normal ARIMA) is that it cannot deal with time series which obviously show seasonality. 
Thus, there is an extension of ARIMA model to overcome this problem. A seasonal ARIMA 
model includes seasonal terms in the normal ARIMA models, mathematically denoted by 
ARIMA(p, d, q)(P, D, Q)m, where P, D, and Q are the autoregression, differencing, and moving 
average order of seasonal part. Moreover, m is the number of observations per year [13]. 
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For instance, if a given time series presents data which are recorded quarterly, then we 
obtain m = 4. For this reason, one should be careful about selecting the appropriate 
variant for any given time series with significant seasonality. 
   Additionally, one must verify whether a fitted ARIMA model is a proper one by 
reviewing the residual error values which are produced during the model training: those 
values should be normally distributed, and they should not correlate with each other. But 
normality of the residuals is a useful, but not necessary property to be satisfied by ARIMA 
models [13]. The task of verifying the normality of the residual values can be achieved by 
the Jarque–Bera test [15] which is also a statistical test. In this test, the null hypothesis 
assumes presence of the normality. As for finding out autocorrelation in the residuals, the 
Ljung–Box test [16] is a suitable tool for it. The null hypothesis for this test assumes 
absence of the autocorrelation. Moreover, the number of lags to for the Ljung-Box test 
must be specified. A suggestion of selecting the number is min(10, T/5) for non-seasonal 
time series and min(2m, T/5) for seasonal time series, where T is the size of time series [17]. 
  3.2.2 Simple Exponential Smoothing Model 
   Simple exponential smoothing (SES) is the simplest exponential smoothing 
model which is suitable to be applied for the predictions of time series which show neither 
trend nor seasonality [13]. Let 𝑠𝑡 denote the smoothed or fitted value and 𝑦𝑡 the actual 
value at time 𝑡. For 𝑡=1, we set 𝑠𝑡 = 𝑦𝑡 [6]. For 𝑡 = 2, …, 𝑇, we have 

𝑠𝑡 = 𝛼∑ (1 − 𝛼)𝑖−1𝑦𝑡−𝑖
𝑡−1
𝑖=1 + (1 − 𝛼)𝑡−1𝑠1, 

   where α is the smoothing parameter between 0 and 1 which can be thought 
of as weight attached to the actual observation value. The predicted future value 𝑦̂𝑡 of SES 
models is 𝑠𝑡, that is, all predicted values take the last smoothed value at time 𝑡 [13]. As for 
the value of 𝛼, we will use an optimisation tool to optimise and find the best value. 
  3.2.3 Double Exponential Smoothing Model 
   Double exponential smoothing (DES) is the extended version of SES. DES 
models can make predictions of time series data which consist of trends. The idea is to 
apply SES twice on the initial time series on the assumption that a twice application of SES 
to a smoothed time series may result in better prediction values. For DES models, there is 
another parameter, alongside the smoothing parameter 𝛼, to be calculated which is called 
the trend parameter 𝛽, a number between 0 and 1. If 𝛽 is small, the trend is assumed to 
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change very slowly over time. If 𝛽 is large, the trend shows the more rapid change [18]. 
   In DES models, there are two equations each of which computes, like in SES 
models,  the smoothed value 𝑠𝑡, and the trend 𝑏𝑡 at time 𝑡. For 𝑡=1, we set 𝑠𝑡 = 𝑦𝑡 and 
𝑏𝑡 = 𝑦2 − 𝑦1 [6], where 𝑦𝑡 is again the actual value. For 𝑡 = 2, …, 𝑇, we compute 𝑠𝑡 and 𝑏𝑡 
as in the following equations: 

𝑠𝑡 = 𝛼𝑦𝑡 + (1 − 𝛼)(𝑠𝑡−1 + 𝑏𝑡−1) and 
𝑏𝑡 = 𝛽(𝑠𝑡 − 𝑠𝑡−1) + (1 − 𝛽)𝑏𝑡−1. 

Finally, the equation for the predicted value thereby can be written as 

𝑦̂𝑡 = 𝑠𝑡 + ℎ𝑏𝑡. 

Again, we will use an optimisation tool to optimise and find the best values for both 𝛼 and 𝛽. 
  3.2.4 Triple Exponential Smoothing Model 
   Triple exponential smoothing (TES) is the extended version of DES. TES 
models have been applied to time series which exhibit not only trend, but also 
seasonality, or in other words, cyclical patterns. The idea, again, is simply that the simple 
exponential smoothing method is applied thrice to the initial time series to make the 
prediction more accurate. There are two model variations to this method the application 
of which depends on the nature of the seasonal pattern. That is, the additive model and 
the multiplicative model. The additive model is more likely to be utilised when the 
amplitude of the seasonal pattern appears relatively constant in time, while the 
multiplicative model is more likely to be preferred when the amplitude of the seasonal 
pattern is proportional to the level of the time series [6, 13]. 
 

 
Figure 3  Additive vs. Multiplicative Seasonality [19]. 
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   Recall that we now have two exponential smoothing parameters, namely the 
smoothing parameter α and the trend parameter 𝛽. In TES models, a parameter for the 
seasonality of time series is additionally required. Hence, the seasonal parameter is defined 
and denoted by 𝛾 which ranges from 0 to 1. For the exact mathematical formulations, we 
would like to refer to such as [13] because it is quite complex, and the computations will 
take place using a Python program. 
  3.2.5 Long Short-Term Memory Network 
   Long short-term memory network (LSTM) is a special type of recurrent neural 
network (RNN). A long short-term memory network has a structure which consists of several 
gated cells. In the cells, information which is available can be stored and written. It can be 
read from these cells, too. The cells decide what to store, and when to allow reads, writes 
and erasures, by means of gates which open and close [20]. The cell state conveys 
information from past and gathering them for the present one. And information can simply 
go along the cell state without being changed. Gates are a way to optionally let 
information pass through or discarded. There are three gates available in a LSTM network 
which help control the cell state: (1) The forget gate decides whether the previous cell 
state should be forgotten, (2) the input gate chooses which new information needs to be 
stored in the cell state, and (3) the output gate generates the output which will be based 
on the cell state. For the exact mathematical formulations, we would like to refer to such 
as [19] because it is quite complex, and the computations will take place using a Python 
program. 
 3.3 Measures of Prediction Accuracy 
   Prediction errors play a major role in the evaluation of the models. Roughly 
speaking, the less the errors, the more accurate the prediction. In practice, it is important 
to make an appropriate choice of a measure of accuracy assessment. The mean absolute 
percentage error (MAPE) is recommended for its application in most publications, though it 
is not suitable to be used in some circumstances. For instance, MAPE is unsuitable for 
intermittent demand data because of the prohibited use of zero and negative actual 
values [21]. MAPE is defined as 

𝑀𝐴𝑃𝐸 =
1

𝑛
|∑

𝑦𝑡−𝑦̂𝑡

𝑦𝑡

𝑇
𝑡=1 |, 
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   where 𝑦𝑡 is the actual value and 𝑦̂𝑡 is the predicted value at time 𝑡 = 1, …, 𝑇. 
We will use MAPE as the accuracy metric. 
 
4. Results 
  The experiment of each model was carried out on an Intel(R) Core(TM) i7-7500 CPU 
processor with 2.7 GHz and a usable memory of 16 GB. Each model was written in Python. 
All the selected models were trained with the training set (the first 100 observations of 
each series) and the parameters of each model were determined using the data. 
 4.1 Building the Models 
  4.1.1 SES, DES, and TES 
   We used statsmodels [22] to build all exponential smoothing models. 
statsmodels is a Python framework which provides classes and functions for the estimation 
of many different statistical models, as well as for conducting statistical tests, and statistical 
data exploration. 
   For each training set, the smoothing parameter 𝛼, the trend parameter 𝛽, and 
the seasonal parameter 𝛾 were optimised using hyperopt [23]. hyperopt is a Python library 
for parameter optimising over search spaces with real-valued, discrete, and conditional 
dimensions. Regarding a normal optimisation procedure with hyperopt, a search space for 
each training set was defined to find the best values of the parameters by which the error 
during the model training was as low as possible. As stated earlier, 𝛼, 𝛽, and 𝛾 are in the 
range of 0 and 1. Therefore, these three parameters were searched for a real number 
between 0 and 1 (certainly, 0 and 1 are excluded). One of both currently implemented 
search algorithm of hyperopt which was used for our task is called tree of Parzen estimator 
(TPE). This algorithm is one of Bayesian optimisation algorithms for hyperparameters [23]. 
Then, the search space and the objective function returning the MAPE from the training set 
were passed in the minimising function to find the optimised smoothing parameter(s) which 
produced the least MAPE during the training. Table 1 shows the optimised values of the 
parameters which are rounded down to values in 8 decimal places, to be more easily 
presented. 
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Table 1. Overview of Exponential Smoothing’s Parameters, ARIMA’s Parameters, and 
LSTM’s hyperparameters (e. = epochs; b.s. = batch size; n. = neurons). 

ID 
SES DES TES ARIMA LSTM 

𝛼 𝛼 𝛽 𝛼 𝛽 𝛾 (𝑝, 𝑑, 𝑞) (𝑃, 𝐷, 𝑄)𝑚 e. b.s. n. 
S1 0.0626919 0.0003931 0.0000251 0.0438373 0.027798 0.0005197 (0, 0, 2) - 100 1 2 
S2 0.1030444 0.0004552 0.0001189 0.1672903 0.0003656 0.0002881 (0, 1, 1) (0, 1, 1)12 200 1 5 
S3 0.9731978 0.9982267 0.0000353 0.0706603 0.0001303 0.0004144 (2, 1, 0) (1, 0, 0)12 50 3 2 
S4 0.6367266 0.3175668 0.0331696 0.1927638 0.1918442 0.0004193 (0, 1, 1) - 200 1 5 
S5 0.1616712 0.2794364 0.0000388 0.7176836 0.0016582 0.0001114 (2, 1, 2) - 200 4 3 
S6 0.9999949 0.9995951 0.9992066 0.981844 0.9542871 0.0181524 (1, 1, 2) - 100 1 2 
S7 0.9986229 0.9999252 0.000008 0.4451375 0.0000836 0.0013893 (1, 1, 1) (0, 1, 1)12 200 5 1 
S8 0.0000161 0.5098825 0.0000364 0.3080804 0.0002687 0.0000672 (1, 0, 0) - 50 3 4 
S9 0.2241311 0.0017878 0.0006171 0.0191358 0.0005383 0.0007275 (0, 0, 0) - 100 4 5 
S10 0.9999955 0.9987753 0.0023751 0.9169906 0.0010011 0.0011748 (0, 1, 0) - 50 1 1 

 
  4.1.2 Normal and Seasonal ARIMA 
   In addition to the ADF test, one can use the Hyndman-Khandakar algorithm 
[13] to build the ARIMA models. Fortunately, there is another Python library called 
pmdarima [24] which uses statsmodels as its backend and hence contains several useful 
statistical functions including the function which can automatically build and fit the best 
ARIMA model, whether normal or seasonal, to a univariate time series based a provided 
information criterion and the necessary parameters given. With significance level 𝛼 set to 
0.05, we performed the ADF test on each training to see beforehand on which training set 
differencing was necessary, as presented in table 2. 
   Now, the results of the ADF test suggested that the time series S1, S8, and S9 
are already stationary. Thus, the model of those three time series should be in form of 
ARIMA(p,0,q) Moreover, one can obviously see that there is significant seasonality in the 
time series S2, S3, and S7. Hence, the seasonal parameters for ARIMA were reasonably to 
be determined, too. 
   We also conducted for each fitted ARIMA model both the Jarque–Bera test 
and the Ljung-Box test to compute the p-value of each test, again with significant level 𝛼 
set to 0.05. For the latter, the number of lags was determined, as described in 3.2.1. The 
results of both tests are presented in table 3. We can see that all training sets passed the 
Ljung-Box test, that is, there is no correlation among the residuals. As for the Jarque-Bara 
test, nevertheless, the null hypothesis of present normality among the residuals in S3, S7, 



ปีท่ี 5 ฉบับท่ี 1 มกราคม – ธันวาคม 2565  วารสารวิชาการโรงเรียนนายเรือดา้นวิทยาศาสตร์และเทคโนโลยี  

54 

 
and S10 was rejected, that is, their residuals were statistically not normally distributed. But 
it has been already pointed out in 3.2.1 that normality of the residuals is just a useful, but 
not necessary property. 
 
Table 2. List of Each Training Set’s p-Value Obtained from The ADF Test. 

ID Periodicity p-value Less than 𝛼? Differencing needed? 

S1 yearly 7.39 x 10-6 Yes No 
S2 monthly 0.32 No Yes 
S3 monthly 1.0 No Yes 
S4 monthly 0.84 No Yes 
S5 monthly 0.74 No Yes 
S6 monthly 0.1 No Yes 
S7 monthly 0.98 No Yes 
S8 yearly 2.69 x 10-11 Yes No 
S9 daily 8.87 x 10-15 Yes No 
S10 daily 0.27 No Yes 

 
Table 3. Results of The Ljung-Box and The Jarque-Bara Test. 

ID 

Ljung-Box test Jarque-Bara test 

Lags 
p-value (at 
max. lag) 

Less than 

𝛼? 
No 

correlation? 
p-value 

Less 

than 𝛼? 
Normality 
present? 

S1 10 0.87 No Yes 0.34 No Yes 
S2 20 0.66 No Yes 0.56 No Yes 
S3 20 0.22 No Yes 1.56 x 10-5 Yes No 
S4 10 0.45 No Yes 0.07 No Yes 
S5 10 0.74 No Yes 0.19 No Yes 
S6 10 0.14 No Yes 0.88 No Yes 
S7 20 0.67 No Yes 1.04 x 10-17 Yes No 
S8 10 0.73 No Yes 0.19 No Yes 
S9 10 0.98 No Yes 0.44 No Yes 
S10 10 0.99 No Yes 0.0 Yes No 
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  4.1.3 LSTM 
   All LSTM models were built using mainly two Python libraries, that is, 
TensorFlow [25] and Keras [26]. Both are the two well established Python libraries most 
used for deep machine learning. Generally, to build a deep machine learning model using 
TensorFlow and Keras, one should consider selecting the best values for hyperparameters, 
such as number of epochs, batch size, and neurons in the hidden layer. One epoch means 
one forward pass and one backward pass of all the training examples and batch size is the 
number of training examples in one forward/backward pass. Of each time series, to find out 
the optimal number of epochs, batch size, and neurons, we again used hyperopt for this 
task. With the same procedure as in the case of exponential smoothing algorithms, for each 
time series, a search space was defined to find the best values of these hyperparameters. 
Due to the performance of the computer on which the experiments were performed, the 
number of epochs was determined between 50 and 200, the number of batch size 
between 1 and 5, and the number of neurons between 10 and 100. Moreover, all the numbers 
must be integer numbers because, for instance, there cannot 47.11 neurons exist in practice. 
   As for LSTM, the last 20 observations in the training set would be used for the 
test to avoid underfit and overfit problems. Hence, in contrast to the other training sets, 
the training set for LSTM would contain 80 observations. Table 1 shows the optimised 
hyperparameters for LSTM models of all time series. 
 4.2 Training and Evaluation 
   After the models were trained with the training set and the MAPEs were 
calculated, as illustrated in table 4. We see that DES was the best model for S1; TES for S2, 
S3, S5, S6, and S7; And LSTM for S4, S8, S9, and S10. We then used these best models to 
make a prediction of the last 20 observations in the evaluation set for each respective 
series. To see how good the best model for each training set made predictions, the results 
of the prediction evaluations in MAPE are provided in table 5. 
 
Table 4. Overview of the MAPEs Calculated During Training. 

ID 

Mean Absolute Percentage Error (MAPE) 

SES DES TES ARIMA 
LSTM 

Training set Test set 
S1 4.61% 4.6% 5.67% 4.89% 5.31% 4.97% 
S2 22.28% 20.39% 4.15% 5.65% 25.76% 26.27% 
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Table 4. Overview of the MAPEs Calculated During Training. (Continued) 
S3 6.89% 6.9% 3.07% 3.86% 7.53% 7.14% 
S4 37.89% 40.72% 46.22% 50.81% 25.8% 23.54% 
S5 12.8% 12.77% 7.14% 24.02% 10.81% 11.03% 
S6 9.04% 7.7% 4.75% 12.26% 6.03% 5.98% 
S7 13.06% 13.15% 4.13% 5.71% 12.1% 12.65% 
S8 51.73% 34.79% 31.58% 35.41% 21.77% 22.09% 
S9 16.05% 62.31% 16.25% 15.9% 15.98% 15.74% 
S10 1.01% 1.05% 2.46% 1.88% 0.65% 0.67% 

 
5.  Conclusions 

In this paper, an experimental comparison of five models on time series prediction 
was carried out. The results in table 4 have revealed that TES performed best in five time 
series, LSTM in four time series, and DES was the best performing models in one time 
series. Thereafter, using the evaluation set, each model was evaluated on prediction 
performance which was measured as MAPE presented in table 5. 

There are totally three time series which show their increasing trend and seasonality 
much significantly, namely time series S2, S3, and S7. Time series S5 shows its increasing 
trend and cyclic pattern, but both components here are not as obvious as in the three 
mentioned earlier. From table 4, we realise that in S2, S3, S5, S6, and S7, TES clearly 
outperformed the other models. In the time series with significant trend and seasonality, 
i.e., in S2, S3, and S7, one can clearly see that TES and seasonal ARIMA were able to 
achieve the similarly small MAPEs. Besides, the MAPEs which were produced by TES in the 
evaluation using those three time series were also considerably low. 
 
Table 5. Overview of Prediction Performance Measurement with MAPE Using The 
Evaluation Sets. 

ID Best Model in Training MAPE 
S1 DES 4.63% 
S2 TES 4.67% 
S3 TES 3.72% 
S4 LSTM 23.25% 
S5 TES 7.26% 
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Table 5. Overview of Prediction Performance Measurement with MAPE Using The 
Evaluation Sets. (Continued) 

S6 TES 14.42% 
S7 TES 8.23% 
S8 LSTM 22.17% 
S9 LSTM 15.32% 
S10 LSTM 0.44% 

 
The remaining time series, namely S1, S4, S6, S8, S9, and S10, present neither clear 

trend nor obvious seasonality. The values of observations in each of these time series vary 
recognisably. Time series S4 and S6 remarkably show both increasing and decreasing trend 
over a period of interest. As displayed in table 4, of these six time series, LSTM outperformed 
the other models in four time series (S4, S8, S9, and S10). In S1, DES was surprisingly slightly 
better than the other models. 

Consider first the time series with clear trend and seasonality. From table 4, with 
TES and seasonal ARIMA, each of the MAPEs was surprisingly less than 10%. In comparison, 
the MAPEs produced by SES, DES, and LSTM were relatively greater. It is strongly arguable 
that both TES and seasonal ARIMA are much more suitable models for data with clear 
trend and seasonality. 

Consider now the time series without trend and seasonality. The MAPEs were 
produced by TES and DES were relatively high, which supports the suggestion over the 
feature of the models mentioned earlier. In S4 which shows indistinct trend and 
seasonality, the MAPEs produced by DES and TES were high. We argue that this can be due 
to that DES and TES are more likely to be used for times series with distinct trend 
(increasing or decreasing) and seasonality. Nevertheless, DES was the best model for S1, 
although the trend is visually not present in it. 

To summarise, from our obtained results in table 4: TES and seasonal ARIMA are the 
most appropriate to be used for time series with clear trend and seasonality. LSTM is the 
most appropriate to be used for time series without trend and seasonality. It is quite 
surprising that LSTM could achieve prediction task in time series analysis well. In future 
work, it would be intriguing, as for LSTM, to perform such an analysis on a more powerful 
graphics processing unit (GPU); this would eventually increase the number of epochs, batch 
size, and neurons and hopefully improve the performance, too. 
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