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ABSTRACT  

Smoking is one of the leading causes of preventable mortality worldwide, affecting multiple organ systems 
and contributing to numerous chronic diseases. It is well established that smoking increases the risk of lung 
cancer, cardiovascular diseases such as heart attacks and strokes, and chronic respiratory conditions, including 
chronic obstructive pulmonary disease (COPD). In Thailand, mathematical modeling has not yet been applied 
to the study of smoking behavior. To better understand smoking behavior and the effects of anti-smoking 
interventions, this study develops a nonlinear mathematical model of smoking in Thailand that incorporates 
the influence of anti-smoking campaigns. The population is categorized into non-smokers, active smokers, 
permanent quitters, and temporary quitters. This simplification makes the model easier to analyze and more 
practical to use. The model assumes that non-smokers may become smokers through social interactions and 
that smokers may quit either temporarily or permanently, with temporary quitters susceptible to relapse. 
The boundedness of the model is proven, and the basic reproductive number (𝑅𝑅0) is derived using the next-
generation matrix method. Stability analyses of both the smoking-free and smoking-present equilibrium 
points using the Routh–Hurwitz criteria show that the system is locally asymptotically stable when 𝑅𝑅0 < 1, 
indicating effective control of smoking prevalence under these conditions. Numerical simulations further 
demonstrate that increasing the rate of anti-smoking campaigns significantly reduces the number of active 
smokers, highlighting the importance of sustained public health interventions. Overall, this combined analytical 
and numerical framework offers valuable insights into smoking dynamics and provides a practical tool for 
designing and evaluating strategies to reduce smoking rates and associated health burdens. 

Keywords: Smoking, Mathematical model, Anti-smoking campaign, Stability analysis 

INTRODUCTION  

Tobacco use remains a significant public health 
concern in Thailand, with far-reaching consequences 
for individual health and the national economy [1]. The 
detrimental effects of smoking are particularly evident 
in the mortality rates associated with secondhand 
smoke exposure. Secondhand smoke leads to over 9,400 
deaths annually in Thailand, surpassing even the United 
States' figure of 7,300 deaths [2]. Smoking-related 
illnesses such as lung cancer, heart disease, and chronic 
respiratory conditions contribute to substantial 
healthcare costs, with costs estimated at approximately 
0.5% of Thailand's GDP annually [3]. Despite efforts 
to reduce smoking prevalence, rates among Thai 
adults aged 15 and above have remained stagnant at 
19-21% as of 2024, threatening the country's goal 
target of reducing smoking by 30% by 2025 [4, 5]. 
High-risk groups include working-age males (39.8%) 
and young males aged 10-14 (11.3%) [5], emphasizing 
the necessity for targeted interventions.  

Socioeconomic factors significantly influence 
and are important for predicting smoking behaviors 
among Thai adults in mathematical models [6, 7]. 
Moreover, these factors can help identify target groups 
for anti-smoking awareness campaigns. Research 
indicates that households with financial strain are 2.41 
times more likely to include smokers, while extended 
families are 1.53 times more likely to experience smoking 
compared to nuclear families [8]. Globally, tobacco 
consumption has decreased by 33% since 2000, 
according to the World Health Organization (WHO) [9]. 
However, countries such as Indonesia and Egypt have 
seen increases in smoking rates [10]. Brazil serves as a 
successful model of tobacco control through MPOWER 
strategies like taxation and advertising bans, which 
have reduced smoking prevalence by 35% [11]. Using 
ideas from other countries together with information 
about Thailand's own society and economy gives 
Thailand a chance to create better policies that fit its 
special needs. 

Several dynamic models of smoking behavior 
have been developed to explore different intervention 
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strategies. In 2019, Verma & Bhadauria [12] introduced 
a mathematical model dividing the population into 
three groups (potential smokers, current smokers, and 
permanent quitters) to analyze how anti-smoking 
campaigns impact smoking behavior, mainly through 
education and media. Khyar et al. [13] presented a 
five-compartment smoking model utilizing optimal 
control theory to identify effective intervention 
strategies. In 2022, Said et al. [14] studied a mathematical 
model to analyze the spread of smoking, considering 
both individual and social influences. The nonlinear 
model divides the population into different smoking 
statuses and examines the transmission dynamics 
within large social networks and among individuals. 
Next year, Sofia et al. [15] focused on the model by 
integrating media-aware populations, demonstrating 
that sustained awareness campaigns could reduce 
smoking prevalence.  

Building on previous research, we improved 
the model by reducing the number of population 
classes from five to four. This simplification makes the 
model easier to analyze and more practical to use. It 
focuses on the most critical stages of smoking by 
removing redundant or overlapping groups without 
losing important behavior details. As a result, the 
model is mathematically simpler and more applicable 
in practice, while still capturing the essential elements 
needed to designing effective interventions. 

This study developed a mathematical model 
of smoking behavior by investigating the effect of 
the anti-smoking campaign rate. The local stability 
of the model's equilibrium points, smoking-free and 
smoking-present, was proven and demonstrated the 
conditions under which smoking prevalence can either 
persist or decline. Furthermore, this paper has been 
appropriately adapted to the social and cultural 
context in Thailand. 

MATERIALS AND METHODS 

1. Model formulation  

The total population is divided into four classes 
of individual, namely non-smokers (𝑆𝑆1), active smokers 
(𝐼𝐼), permanent quitters (𝑄𝑄) and temporary quitters 
(𝑆𝑆2). We assumed that individuals in the non-smoker 
class become active smokers when they interact with 
smokers or social smokers (at rate 1 − 𝜙𝜙 and 𝛽𝛽). 
Moreover, they either quit smoking temporarily (at 
rate 𝜎𝜎 + 𝜙𝜙 and 1 − 𝜉𝜉) or permanently quit smoking (at 
rate 𝜎𝜎 + 𝜙𝜙  and 𝜉𝜉). The temporary quitting smokers 
may become smokers again. In Figure1, it illustrates 
the diagram of the smoking model consisting of non-
smokers, active smokers, permanent quitters, and 
temporary quitters classes from the total population 
(𝑁𝑁). 

 
Figure 1 The smoking model. 

From Figure 1, the smoking model identifies 
the coefficients viz Λ to represent the recruitment 
rate of potential smokers, 𝜇𝜇 for natural death rate, 𝜇𝜇𝑠𝑠 
to denote disease (smoking) death rate, 𝜙𝜙 for campaign 
rate, 𝛽𝛽 to represent rate of potential smokers becoming 
smokers, 𝜎𝜎  to denote quitting smoking rate, and 𝜉𝜉 
for proportion of permanent quitting smoking. The 
model variables and parameters are summarized in 
Table 1.

Table 1 Description of the model variables and parameters. 

 Symbol Description Unit 

Variable 𝑆𝑆1 Non-smokers Person  
 𝐼𝐼 Active smokers  Person 

 𝑄𝑄 Permanent quitters Person 

 𝑆𝑆2 Temporary quitters Person 

Parameter Λ Recruitment rate of potential smokers Person per day 

 𝜇𝜇 Natural death rate Per day 

 𝜇𝜇𝑠𝑠 Disease (smoking) death rate Per day 

 𝜙𝜙 Campaign rate Per day 

 𝛽𝛽 Rate of potential smokers becoming smokers Per person per day 

 𝜎𝜎 Quitting smoking rate Per day 

 𝜉𝜉 Proportion of permanent quitting smoking - 
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The mathematical representation of the 
smoking behavior has shown as a system of nonlinear 
ordinary differential equations (1) given as: 
𝑑𝑑𝑆𝑆1
𝑑𝑑𝑑𝑑

= Λ − (1 − 𝜙𝜙)𝛽𝛽𝑆𝑆1𝐼𝐼 − 𝜇𝜇𝑆𝑆1
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= (1 − 𝜙𝜙)𝛽𝛽(𝑆𝑆1 + 𝑆𝑆2)𝐼𝐼 − (𝜎𝜎 + 𝜙𝜙)𝐼𝐼 − (𝜇𝜇 + 𝜇𝜇𝑠𝑠)𝐼𝐼
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜉𝜉(𝜎𝜎 + 𝜙𝜙)𝐼𝐼 − 𝜇𝜇𝜇𝜇
𝑑𝑑𝑆𝑆2
𝑑𝑑𝑑𝑑

= (1 − 𝜉𝜉)(𝜎𝜎 + 𝜙𝜙)𝐼𝐼 − (1 − 𝜙𝜙)𝛽𝛽𝑆𝑆2𝐼𝐼 − 𝜇𝜇𝑆𝑆2

 (1) 

with initial conditions 𝑆𝑆1(0) ≥ 0, 𝐼𝐼(0) ≥ 0, 𝑄𝑄(0) ≥ 0, 
and 𝑆𝑆2(0) ≥ 0. Here 𝑁𝑁(𝑡𝑡) = 𝑆𝑆1(𝑡𝑡) + 𝐼𝐼(𝑡𝑡) + 𝑄𝑄(𝑡𝑡) + 𝑆𝑆2(𝑡𝑡) 
is the total population.  

We differentiate 𝑁𝑁(𝑡𝑡) with respect to 𝑡𝑡, then 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑆𝑆1
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+
𝑑𝑑𝑆𝑆2
𝑑𝑑𝑑𝑑

               
                        = Λ − 𝜇𝜇(𝑆𝑆1 + 𝐼𝐼 + 𝑄𝑄 + 𝑆𝑆2) − 𝜇𝜇𝑠𝑠𝐼𝐼 
                        = Λ − 𝜇𝜇𝜇𝜇 − 𝜇𝜇𝑠𝑠𝐼𝐼                      
                        ≤ Λ − 𝜇𝜇𝜇𝜇                                  

     
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+ 𝜇𝜇𝜇𝜇 ≤ Λ. 

By solving the above inequality, we get 

𝑁𝑁(𝑡𝑡) ≤
Λ
𝜇𝜇

+ 𝑁𝑁(0)𝑒𝑒−𝜇𝜇𝜇𝜇 −
Λ
𝜇𝜇
𝑒𝑒−𝜇𝜇𝜇𝜇 . 

Taking the limit 𝑡𝑡 → ∞, yields 

𝑁𝑁(𝑡𝑡) ≤
Λ
𝜇𝜇

= 𝒩𝒩. 

2. Mathematical analysis 

2.1 Existence of equilibria 
From the system of nonlinear ordinary 

differential equations (1), stability analysis has been 
carried out the equilibrium points. To determine the 
equilibrium points, each equation in the system of 
equation (1) must be equal to zero, that is, 𝑑𝑑𝑆𝑆1

𝑑𝑑𝑑𝑑
= 0, 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0, 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 0, and 𝑑𝑑𝑆𝑆2
𝑑𝑑𝑑𝑑

= 0.  
The system (1) can be written as: 

 Λ − (1 − 𝜙𝜙)𝛽𝛽𝑆𝑆1𝐼𝐼 − 𝜇𝜇𝑆𝑆1 = 0 (2) 
 (1 − 𝜙𝜙)𝛽𝛽(𝑆𝑆1 + 𝑆𝑆2)𝐼𝐼 − (𝜎𝜎 + 𝜙𝜙)𝐼𝐼 − (𝜇𝜇 + 𝜇𝜇𝑠𝑠)𝐼𝐼 = 0 (3) 

 𝜉𝜉(𝜎𝜎 + 𝜙𝜙)𝐼𝐼 − 𝜇𝜇𝜇𝜇 = 0 (4) 
 (1 − 𝜉𝜉)(𝜎𝜎 + 𝜙𝜙)𝐼𝐼 − (1 − 𝜙𝜙)𝛽𝛽𝑆𝑆2𝐼𝐼 − 𝜇𝜇𝑆𝑆2 = 0 (5) 

Using equations (2) - (5), two equilibrium 
points are found, namely the smoking-free equilibrium 
point 𝐸𝐸0 = (𝑆𝑆10, 𝐼𝐼0,𝑄𝑄0, 𝑆𝑆20)  and the smoking-present 
equilibrium point 𝐸𝐸1 = (𝑆𝑆1∗, 𝐼𝐼∗,𝑄𝑄∗, 𝑆𝑆2∗). 

The smoking-free equilibrium refers to the 
situation in which the population has no smokers, 
then 𝐼𝐼 = 0. 

From equation (2), we get  𝑆𝑆1 = Λ ∕ 𝜇𝜇. Then 
the smoking-free equilibrium point of the model is:  

𝐸𝐸0 = �
Λ
𝜇𝜇

, 0,0,0� 

2.2 The basic reproduction number  

The basic reproduction number (𝑅𝑅0)  represents 
how many new people, on average, will start smoking 
due to the influence of one current smoker throughout 
their entire smoking lifetime. We calculate 𝑅𝑅0  by 
using the next generation matrix method [16].  

Let 𝑥𝑥 = (𝑆𝑆1, 𝐼𝐼,𝑄𝑄, 𝑆𝑆2)𝑇𝑇 , the system (1) can be 
rewritten in the matrix form,  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= ℱ(𝑥𝑥) − Ѵ(𝑥𝑥),  
where 

ℱ(𝑥𝑥) = �

Λ
(1 − 𝜙𝜙)𝛽𝛽(𝑆𝑆1 + 𝑆𝑆2)𝐼𝐼

𝜉𝜉(𝜎𝜎 + 𝜙𝜙)𝐼𝐼
(1 − 𝜉𝜉)(𝜎𝜎 + 𝜙𝜙)𝐼𝐼

�, 

and 

Ѵ(𝑥𝑥) =

⎣
⎢
⎢
⎡

(1 − 𝜙𝜙)𝛽𝛽𝑆𝑆1𝐼𝐼 + 𝜇𝜇𝑆𝑆1
(𝜎𝜎 + 𝜙𝜙)𝐼𝐼 + (𝜇𝜇 + 𝜇𝜇𝑠𝑠)𝐼𝐼

𝜇𝜇𝜇𝜇
(1 − 𝜙𝜙)𝛽𝛽𝑆𝑆2𝐼𝐼 + 𝜇𝜇𝑆𝑆2 ⎦

⎥
⎥
⎤
. 

The Jacobian matrices of ℱ(𝑥𝑥) and Ѵ(𝑥𝑥) are 
evaluated as follows: 

                     𝐹𝐹𝐸𝐸0 =

⎣
⎢
⎢
⎢
⎡
0 0 0 0
0 (1 − 𝜙𝜙)𝛽𝛽 Λ

𝜇𝜇
0 0

0 𝜉𝜉(𝜎𝜎 + 𝜙𝜙) 0 0
0 (1 − 𝜉𝜉)(𝜎𝜎 + 𝜙𝜙) 0 0⎦

⎥
⎥
⎥
⎤
, 

and  

       𝑉𝑉𝐸𝐸0 =

⎣
⎢
⎢
⎢
⎡𝜇𝜇 (1 − 𝜙𝜙)𝛽𝛽 Λ

𝜇𝜇
0 0

0 𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠 0 0
0 0 𝜇𝜇 0
0 0 0 𝜇𝜇⎦

⎥
⎥
⎥
⎤
. 

Therefore, the basic reproduction number is 
given by the spectral radius (𝜌𝜌) of the next generation 
matrix: 

𝑅𝑅0 = 𝜌𝜌�𝐹𝐹𝐸𝐸0𝑉𝑉𝐸𝐸0
−1� =

(1 − 𝜙𝜙)𝛽𝛽Λ
(𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠)𝜇𝜇

=
𝑎𝑎0Λ
𝑎𝑎1𝜇𝜇

 

where 𝑎𝑎0 = (1 − 𝜙𝜙)𝛽𝛽 and 𝑎𝑎1 = 𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠. 

Theorem 2.1 The smoking-present equilibrium point 
of the system (1) is  

𝐸𝐸1 = �
Λ

𝑎𝑎0𝐼𝐼∗ + 𝜇𝜇
,
Λ(𝑅𝑅0 − 1)
𝑎𝑎2𝑅𝑅0

,
𝑎𝑎3𝐼𝐼∗

𝜇𝜇
,
(1 − 𝜉𝜉)𝑎𝑎4𝐼𝐼∗

𝑎𝑎0𝐼𝐼∗ + 𝜇𝜇
� 

where 𝑎𝑎0 = (1 − 𝜙𝜙)𝛽𝛽 , 𝑎𝑎2 = 𝜉𝜉(𝜎𝜎 + 𝜙𝜙) + 𝜇𝜇 + 𝜇𝜇𝑠𝑠 , 𝑎𝑎3 =
𝜉𝜉(𝜎𝜎 + 𝜙𝜙), and 𝑎𝑎4 = 𝜎𝜎 + 𝜙𝜙. 
Proof   For the smoking-present equilibrium, the 
population 𝑆𝑆1∗ ≠ 0, 𝐼𝐼∗ ≠ 0,𝑄𝑄∗ ≠ 0, and 𝑆𝑆2∗ ≠ 0. 
From equation (2): Λ − (1 − 𝜙𝜙)𝛽𝛽𝑆𝑆1𝐼𝐼 − 𝜇𝜇𝑆𝑆1 = 0,  thus, 
we find 

𝑆𝑆1∗ =
Λ

(1 − 𝜙𝜙)𝛽𝛽𝐼𝐼∗ + 𝜇𝜇
=

Λ
𝑎𝑎0𝐼𝐼∗ + 𝜇𝜇

. 

From equation (4): 𝜉𝜉(𝜎𝜎 + 𝜙𝜙)𝐼𝐼 − 𝜇𝜇𝜇𝜇 = 0,  which 
implies that 

𝑄𝑄∗ =
𝜉𝜉(𝜎𝜎 + 𝜙𝜙)𝐼𝐼∗

𝜇𝜇
=
𝑎𝑎3𝐼𝐼∗

𝜇𝜇
. 

From equation (5), we can write 

𝑆𝑆2∗ =
(1 − 𝜉𝜉)(𝜎𝜎 + 𝜙𝜙)𝐼𝐼∗

(1 − 𝜙𝜙)𝛽𝛽𝐼𝐼∗ + 𝜇𝜇
=

(1 − 𝜉𝜉)𝑎𝑎4𝐼𝐼∗

𝑎𝑎0𝐼𝐼∗ + 𝜇𝜇
. 

From equation (3), we obtain 
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[(1 − 𝜙𝜙)𝛽𝛽(𝑆𝑆1∗ + 𝑆𝑆2∗) − (𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠)]𝐼𝐼∗ = 0. 
Since 𝐼𝐼∗ ≠ 0, that is,  

(1 − 𝜙𝜙)𝛽𝛽(𝑆𝑆1∗ + 𝑆𝑆2∗) − (𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠) = 0       

 𝑆𝑆1∗ + 𝑆𝑆2∗ =
𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠

(1 − 𝜙𝜙)𝛽𝛽
                                      

Λ + (1 − 𝜉𝜉)(𝜎𝜎 + 𝜙𝜙)𝐼𝐼∗

(1 − 𝜙𝜙)𝛽𝛽𝐼𝐼∗ + 𝜇𝜇
=

Λ
𝜇𝜇𝑅𝑅0

                                

    Λ𝜇𝜇𝑅𝑅0 + (1 − 𝜉𝜉)(𝜎𝜎 + 𝜙𝜙)𝜇𝜇𝑅𝑅0𝐼𝐼∗ = Λ(1 − 𝜙𝜙)𝛽𝛽𝐼𝐼∗ + Λ𝜇𝜇 

𝐼𝐼∗ =
Λ𝜇𝜇(1 − 𝑅𝑅0)

(1 − 𝜉𝜉)(𝜎𝜎 + 𝜙𝜙)𝜇𝜇𝑅𝑅0 − Λ(1 − 𝜙𝜙)𝛽𝛽
                           

𝐼𝐼∗ =
Λ𝜇𝜇(1 − 𝑅𝑅0)

(1 − 𝜉𝜉)(𝜎𝜎 + 𝜙𝜙)𝜇𝜇𝑅𝑅0 − (𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠)𝜇𝜇𝑅𝑅0
.        

Therefore,  

𝐼𝐼∗ =
Λ(𝑅𝑅0 − 1)

[𝜉𝜉(𝜎𝜎 + 𝜙𝜙) + 𝜇𝜇 + 𝜇𝜇𝑠𝑠)]𝑅𝑅0
=
Λ(𝑅𝑅0 − 1)
𝑎𝑎2𝑅𝑅0

. 

Hence, the smoking-present equilibrium point of 
the model is:  

𝐸𝐸1 = �
Λ

𝑎𝑎0𝐼𝐼∗ + 𝜇𝜇
,
Λ(𝑅𝑅0 − 1)
𝑎𝑎2𝑅𝑅0

,
𝑎𝑎3𝐼𝐼∗

𝜇𝜇
,
(1 − 𝜉𝜉)𝑎𝑎4𝐼𝐼∗

𝑎𝑎0𝐼𝐼∗ + 𝜇𝜇
�, 

where 𝑎𝑎0 = (1 − 𝜙𝜙)𝛽𝛽, 𝑎𝑎2 = 𝜉𝜉(𝜎𝜎 + 𝜙𝜙) + 𝜇𝜇 + 𝜇𝜇𝑠𝑠, 𝑎𝑎3 =
𝜉𝜉(𝜎𝜎 + 𝜙𝜙), and 𝑎𝑎4 = 𝜎𝜎 + 𝜙𝜙.  

2.3 Stability analysis 
According to the system (1), the Jacobian 

matrix (𝐽𝐽) is found: 

𝐽𝐽 =

⎣
⎢
⎢
⎡
−𝑎𝑎0𝐼𝐼 − 𝜇𝜇 −𝑎𝑎0𝑆𝑆1 0 0

𝑎𝑎0𝐼𝐼 𝑎𝑎0(𝑆𝑆1 + 𝑆𝑆2) − 𝑎𝑎1 0 𝑎𝑎0𝐼𝐼
0 𝜉𝜉(𝜎𝜎 + 𝜙𝜙) −𝜇𝜇 0
0 (1 − 𝜉𝜉)(𝜎𝜎 + 𝜙𝜙) − 𝑎𝑎0𝑆𝑆2 0 −𝑎𝑎0𝐼𝐼 − 𝜇𝜇⎦

⎥
⎥
⎤
 (6) 

where 𝑎𝑎0 = (1 − 𝜙𝜙)𝛽𝛽 and 𝑎𝑎1 =  𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠. 
At the smoking-free equilibrium point, the 

local stability is determined by the eigenvalues (𝜆𝜆) 
from: 

 det�𝐽𝐽𝐸𝐸0 − 𝜆𝜆𝜆𝜆� = 0 (7) 

where 𝐽𝐽𝐸𝐸0  is the Jacobian matrix at the smoking-free 
equilibrium point and 𝐼𝐼 is the identity matrix. If all 
the eigenvalues of the characteristic equation have 
negative real parts, 𝐸𝐸0 is stable.  

At the smoking-present equilibrium point, 
the local stability is determined by the eigenvalues 
from: 

 det�𝐽𝐽𝐸𝐸1 − 𝜆𝜆𝜆𝜆� = 0 (8) 

where 𝐽𝐽𝐸𝐸1  is the Jacobian matrix at the smoking-
present equilibrium point. If all the eigenvalues of 
the characteristic equation have negative real parts, 
𝐸𝐸1 is stable.  
Theorem 2.2 If 𝑅𝑅0 < 1 , the smoking-free equilibrium 
point 𝐸𝐸0  is local asymptotically stable while 𝐸𝐸0  is 
unstable if 𝑅𝑅0 > 1 
Proof  At the smoking-free equilibrium point, 
substituting 𝑆𝑆1 = Λ ∕ 𝜇𝜇, 𝐼𝐼 = 0, and 𝑆𝑆2 = 0 into equation 
(6), it obtains: 

𝐽𝐽𝐸𝐸0 =

⎣
⎢
⎢
⎢
⎢
⎡−𝜇𝜇 −𝑎𝑎0

Λ
𝜇𝜇

0 0

0 𝑎𝑎0
Λ
𝜇𝜇
− 𝑎𝑎1 0 0

0 𝜉𝜉(𝜎𝜎 + 𝜙𝜙) −𝜇𝜇 0
0 (1 − 𝜉𝜉)(𝜎𝜎 + 𝜙𝜙) 0 −𝜇𝜇⎦

⎥
⎥
⎥
⎥
⎤

, 

where 𝑎𝑎0 = (1 − 𝜙𝜙)𝛽𝛽 and 𝑎𝑎1 =  𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠. 
The eigenvalues are found by solving the 

characteristic equation (7). 
Therefore, the eigenvalues of 𝐽𝐽𝐸𝐸0 are given as 

follows: 
𝜆𝜆1 = 𝜆𝜆2 = 𝜆𝜆3 = −𝜇𝜇, and 𝜆𝜆4 = 𝑎𝑎1(𝑅𝑅0 − 1). 
It is obvious that 𝜆𝜆4 < 0 if 𝑅𝑅0 < 1 . Thus, all 

eigenvalues of equation (7) are negative real parts. 
Therefore, the smoking-free equilibrium point 𝐸𝐸0 is 
local asymptotically stable. 

If 𝑅𝑅0 > 1,  equation (7) has a positive 
eigenvalue. Therefore, 𝐸𝐸0 is unstable.   
Theorem 2.3 If 𝑅𝑅0 > 1 , the smoking-present 
equilibrium point 𝐸𝐸1 is local asymptotically stable. 
Proof  At the smoking-present equilibrium point, 
substituting 𝑆𝑆1∗ = Λ

𝑎𝑎0𝐼𝐼∗+𝜇𝜇
, 𝐼𝐼∗ = Λ(𝑅𝑅0−1)

𝑎𝑎2𝑅𝑅0
, and 𝑆𝑆2∗ =

(1−𝜉𝜉)𝑎𝑎4𝐼𝐼∗

𝑎𝑎0𝐼𝐼∗+𝜇𝜇
 into equation (6), it obtain: 

𝐽𝐽𝐸𝐸1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡−

𝜇𝜇𝑎𝑎1(𝑅𝑅0 − 1)
𝑎𝑎2

− 𝜇𝜇 −
𝑎𝑎1𝑎𝑎2𝑅𝑅0

𝑎𝑎1(𝑅𝑅0 − 1) + 𝑎𝑎2
0 0

𝜇𝜇𝑎𝑎1(𝑅𝑅0 − 1)
𝑎𝑎2

0 0
𝜇𝜇𝑎𝑎1(𝑅𝑅0 − 1)

𝑎𝑎2
0 𝑎𝑎3 −𝜇𝜇 0

0
(𝑎𝑎4 − 𝑎𝑎3)𝑎𝑎2

𝑎𝑎1(𝑅𝑅0 − 1) + 𝑎𝑎2
0 −

𝜇𝜇𝑎𝑎1(𝑅𝑅0 − 1)
𝑎𝑎2

− 𝜇𝜇⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

, 

where 𝑎𝑎1 =  𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠, 𝑎𝑎2 = 𝜉𝜉(𝜎𝜎 + 𝜙𝜙) + 𝜇𝜇 + 𝜇𝜇𝑠𝑠,  
𝑎𝑎3 = 𝜉𝜉(𝜎𝜎 + 𝜙𝜙), and 𝑎𝑎4 = 𝜎𝜎 + 𝜙𝜙. 
The eigenvalues are found by solving the characteristic 
equation: 

det�𝐽𝐽𝐸𝐸1 − 𝜆𝜆𝜆𝜆� = 0 

From the computation, the eigenvalues were 
𝜆𝜆1 = −𝜇𝜇  and the other three eigenvalues are the 
roots of the following equation:  

𝜆𝜆3 + 𝐴𝐴𝜆𝜆2 + 𝐵𝐵𝐵𝐵 + 𝐶𝐶 = 0, 
where  

𝐴𝐴 =
2𝜇𝜇[𝑎𝑎1(𝑅𝑅0 − 1) + 𝑎𝑎2]

𝑎𝑎2
, 

𝐵𝐵 =
𝜇𝜇𝑎𝑎1(𝑅𝑅0 − 1)(𝑎𝑎3 − 𝑎𝑎4 + 𝑎𝑎1𝑅𝑅0)

𝑎𝑎1(𝑅𝑅0 − 1) + 𝑎𝑎2
+ 𝜇𝜇2[𝑎𝑎1(𝑅𝑅0 − 1) + 𝑎𝑎2]2, 

and 

𝐶𝐶 =
𝜇𝜇2𝑎𝑎1(𝑅𝑅0 − 1)(𝑎𝑎3 − 𝑎𝑎4 + 𝑎𝑎1𝑅𝑅0)

𝑎𝑎2
. 

When 𝑅𝑅0 > 1, then 𝐴𝐴 > 0,  

𝐵𝐵 =
𝜇𝜇𝑎𝑎1(𝑅𝑅0 − 1)(𝑎𝑎3 − 𝑎𝑎4 + 𝑎𝑎1𝑅𝑅0)

𝑎𝑎1(𝑅𝑅0 − 1) + 𝑎𝑎2
+ 𝜇𝜇2[𝑎𝑎1(𝑅𝑅0 − 1) + 𝑎𝑎2]2 

    >
𝜇𝜇𝑎𝑎1(𝑅𝑅0 − 1)(𝑎𝑎3 − 𝑎𝑎4 + 𝑎𝑎1𝑅𝑅0)

𝑎𝑎1(𝑅𝑅0 − 1) + 𝑎𝑎2
 

    =
𝜇𝜇𝑎𝑎1(𝑅𝑅0 − 1)[𝑎𝑎3 − 𝑎𝑎4 + (𝑎𝑎4 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠)𝑅𝑅0]

𝑎𝑎1(𝑅𝑅0 − 1) + 𝑎𝑎2
 

    =
𝜇𝜇𝑎𝑎1(𝑅𝑅0 − 1)[𝑎𝑎3 + 𝑎𝑎4(𝑅𝑅0 − 1) + (𝜇𝜇 + 𝜇𝜇𝑠𝑠)𝑅𝑅0]

𝑎𝑎1(𝑅𝑅0 − 1) + 𝑎𝑎2
> 0, 

𝐶𝐶 =
𝜇𝜇2𝑎𝑎1(𝑅𝑅0 − 1)(𝑎𝑎3 − 𝑎𝑎4 + 𝑎𝑎1𝑅𝑅0)

𝑎𝑎2
> 0, 

and 

𝐴𝐴𝐴𝐴 =
2𝜇𝜇2𝑎𝑎1(𝑅𝑅0 − 1)(𝑎𝑎3 − 𝑎𝑎4 + 𝑎𝑎1𝑅𝑅0)

𝑎𝑎2
+

2𝜇𝜇2

𝑎𝑎2
[𝑎𝑎1(𝑅𝑅0 − 1) + 𝑎𝑎2]3 
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       >
𝜇𝜇2𝑎𝑎1(𝑅𝑅0 − 1)(𝑎𝑎3 − 𝑎𝑎4 + 𝑎𝑎1𝑅𝑅0)

𝑎𝑎2
= 𝐶𝐶 

By the Routh-Hurwitz criterion [17], all eigenvalues 
of equation (9) are negative real parts. Therefore, the 
smoking-present equilibrium point 𝐸𝐸1  is local 
asymptotically stable.  

2.4 Sensitivity analysis 
A sensitivity analysis of the basic reproduction 

number was conducted to assess to determine the 
robustness of the model's stability conclusions and 
to identify which parameters are the most effective 
targets for intervention. 

The normalized forward sensitivity index 
(Υ𝑝𝑝

𝑅𝑅0) is employed by using the formula 

Υ𝑝𝑝
𝑅𝑅0 =

𝜕𝜕𝑅𝑅0
𝜕𝜕𝜕𝜕

⋅
𝑝𝑝
𝑅𝑅0

 

where 𝑝𝑝 is any parameter of the model. Then 

ΥΛ
𝑅𝑅0 =

𝜕𝜕𝑅𝑅0
𝜕𝜕Λ

⋅
Λ
𝑅𝑅0

 

        =
(1 − 𝜙𝜙)𝛽𝛽

(𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠)𝜇𝜇
⋅

(𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠)𝜇𝜇Λ
(1 − 𝜙𝜙)𝛽𝛽Λ

= 1 

Υ𝜇𝜇
𝑅𝑅0 =

𝜕𝜕𝑅𝑅0
𝜕𝜕𝜕𝜕

⋅
𝜇𝜇
𝑅𝑅0

 

        = −
(1 − 𝜙𝜙)𝛽𝛽Λ

(𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠)𝜇𝜇
�
1
𝜇𝜇

+
1

𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠
�

⋅
(𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠)𝜇𝜇2

(1 − 𝜙𝜙)𝛽𝛽Λ
 

        = −
𝜎𝜎 + 𝜙𝜙 + 2𝜇𝜇 + 𝜇𝜇𝑠𝑠
𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠

 

Υ𝜇𝜇𝑠𝑠
𝑅𝑅0 =

𝜕𝜕𝑅𝑅0
𝜕𝜕𝜇𝜇𝑠𝑠

⋅
𝜇𝜇𝑠𝑠
𝑅𝑅0

 

        = −
(1 − 𝜙𝜙)𝛽𝛽Λ

(𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠)2𝜇𝜇
⋅

(𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠)𝜇𝜇𝜇𝜇𝑠𝑠
(1 − 𝜙𝜙)𝛽𝛽Λ

 

        = −
𝜇𝜇𝑠𝑠

𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠
 

Υ𝜙𝜙
𝑅𝑅0 =

𝜕𝜕𝑅𝑅0
𝜕𝜕𝜕𝜕

⋅
𝜙𝜙
𝑅𝑅0

 

        = −
(𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠)𝜇𝜇𝛽𝛽Λ + (1 − 𝜙𝜙)𝛽𝛽Λμ

(𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠)2𝜇𝜇2

⋅
(𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠)𝜇𝜇𝜙𝜙

(1 − 𝜙𝜙)𝛽𝛽Λ
 

        = −
(𝜎𝜎 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠 + 1)𝜙𝜙

(1 − 𝜙𝜙)(𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠) 

Υ𝛽𝛽
𝑅𝑅0 =

𝜕𝜕𝑅𝑅0
𝜕𝜕𝜕𝜕

⋅
𝛽𝛽
𝑅𝑅0

 

        =
(1 − 𝜙𝜙)Λ

(𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠)𝜇𝜇
⋅

(𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠)𝜇𝜇β
(1 − 𝜙𝜙)𝛽𝛽Λ

= 1 

Υ𝜎𝜎
𝑅𝑅0 =

𝜕𝜕𝑅𝑅0
𝜕𝜕𝜕𝜕

⋅
𝜎𝜎
𝑅𝑅0

 

        = −
(1 − 𝜙𝜙)𝛽𝛽Λ

(𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠)2𝜇𝜇
⋅

(𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠)𝜇𝜇𝜎𝜎
(1 − 𝜙𝜙)𝛽𝛽Λ

 

        = −
𝜎𝜎

𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠
 

Υ𝜉𝜉
𝑅𝑅0 =

𝜕𝜕𝑅𝑅0
𝜕𝜕𝜕𝜕

⋅
𝜉𝜉
𝑅𝑅0

= 0 ⋅
(𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠)𝜇𝜇𝜉𝜉

(1 − 𝜙𝜙)𝛽𝛽Λ
= 0. 

The sign of the normalized forward sensitivity 
index indicates the direction of influence (positive 
means 𝑅𝑅0  increases when 𝑝𝑝  increases), while the 
magnitude indicates the strength of the influence.  

RESULTS AND DISCUSSION 

To facilitate a more general and scalable 
analysis of the numerical results, we now introduce 
a dimensionless formulation of the system (1) by the 
new variables: 𝑆𝑆1� = 𝑆𝑆1/𝒩𝒩 , 𝐼𝐼 ̅ = 𝐼𝐼/𝒩𝒩 , 𝑄𝑄� = 𝑄𝑄/𝒩𝒩 , and 
𝑆𝑆2� = 𝑆𝑆2/𝒩𝒩 (see Appendix for more details), then the 
system (1) becomes 

𝑑𝑑𝑆𝑆1�
𝑑𝑑𝑑𝑑

= 𝜇𝜇 − (1 − 𝜙𝜙)𝛽𝛽𝑆𝑆1� 𝐼𝐼𝒩̅𝒩 − 𝜇𝜇𝑆𝑆1�

𝑑𝑑𝐼𝐼 ̅
𝑑𝑑𝑑𝑑

= (1 − 𝜙𝜙)𝛽𝛽(𝑆𝑆1� + 𝑆𝑆2� )𝐼𝐼𝒩̅𝒩 − (𝜎𝜎 + 𝜙𝜙)𝐼𝐼 ̅ − (𝜇𝜇 + 𝜇𝜇𝑠𝑠)𝐼𝐼 ̅

𝑑𝑑𝑄𝑄�
𝑑𝑑𝑑𝑑

= 𝜉𝜉(𝜎𝜎 + 𝜙𝜙)𝐼𝐼 ̅ − 𝜇𝜇𝑄𝑄�

𝑑𝑑𝑆𝑆2�
𝑑𝑑𝑑𝑑

= (1 − 𝜉𝜉)(𝜎𝜎 + 𝜙𝜙)𝐼𝐼 ̅ − (1 − 𝜙𝜙)𝛽𝛽𝑆𝑆2� 𝐼𝐼𝒩̅𝒩 − 𝜇𝜇𝑆𝑆2�

 

To illustrate the insights gained from the 
above mathematical model of smoking, we employed 
numerical simulations. These simulations allow for 
the exploration of model behavior under various 
conditions, through adjustment of the parameters 
stated in Table 2.

Table 2 Parameters used in the investigation. 

Symbol Description Value Source 

Λ Recruitment rate of potential smokers 20 Estimate  
𝜇𝜇 Natural death rate 0.0091/365 [18] 

𝜇𝜇𝑠𝑠 Disease (smoking) death rate 0.0072/365 [19, 20] 

𝜙𝜙 Campaign rate 0 - 0.04 Estimate 

𝛽𝛽 Rate of potential smokers becoming smokers 0.05/𝒩𝒩 [15, 21] 

𝜎𝜎 Quitting smoking rate 0.011 [20] 

𝜉𝜉 Proportion of permanent quitting smoking 0.023 [22] 
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Figure 2 Variation of individuals in each class over 400 

days when the campaign rate (𝜙𝜙) was 0, 
with the initial conditions of (𝑆𝑆1� , 𝐼𝐼 ,̅𝑄𝑄� , 𝑆𝑆2� ) =
(0.85, 0.15, 0, 0). 

Figure 2 shows the simulated changes in 
population sizes for non-smokers who are at risk of 
becoming smokers ( 𝑆𝑆1� ), active smokers ( 𝐼𝐼 ̅ ), ex-
smokers who permanently quit smoking (𝑄𝑄�), and 
ex-smokers who temporarily quit smoking (𝑆𝑆2� ) over 
a year period. The simulation uses hypothetical 
parameter values to illustrate the dynamics of smoking 
behavior. Initially, the population consists of 85% non-
smokers and 15% active smokers. As time progresses, 
the active smoker population increases, while the 
non-smoker population declines. The model also 
shows the proportions of temporary and permanent 
quitters changing over time. The temporary quitters 
initially increase as some smokers attempt to quit, 
but this number decreases as some of those temporary 
quitters relapse back to smoking, while others successfully 
transition to permanent quitters. The permanent 
quitter population consistently increases, showing the 
accumulation of individuals who have successfully 
quit smoking over the long term. The time required 
for the smoking system to settle into its smoking-
present equilibrium point is characterized by different 
rates of convergence among its classes. While the 
non-smokers and temporary quitters reach their long-
term proportions within approximately 200 days, 
creating a state of practical stability, the system's 
absolute convergence takes much longer. This extended 
time is necessary because the active smoker proportion 
does not reach the smoking-present equilibrium point 
within the 400-day, but continues a very slow decline 

as individuals exit the class through quitting. This slow, 
continuous flow out of active smokers simultaneously 
drives the accumulation of permanent quitters, making 
permanent quitters the slowest-moving class. Since 
both active smokers is still subtly changing and 
permanent quitters is still visibly increasing at 400 
days, the total time required for the entire system to 
achieve its strict mathematical steady-state is 
characterized by an extremely gradual approach, 
with the final pace governed by the natural death 
rate and the slow permanent quitter accumulation. 

 
Figure 3 Variation of active smokers (𝐼𝐼)̅ over 400 days 

with various campaign rates (𝜙𝜙) and the initial 
conditions of (𝑆𝑆1� , 𝐼𝐼 ,̅𝑄𝑄� , 𝑆𝑆2� ) = (0.85, 0.15, 0, 0). 

Figure 3 presents the effect of the anti-smoking 
campaign rate (𝜙𝜙) on the proportion of active smokers 
in the smoking model. The simulation shows that as 
the campaign rate increases from 𝜙𝜙 = 0.000 to 𝜙𝜙 =
0.015, the proportion of individuals who are smokers 
stabilizes at a lower level over time. This indicates 
that a higher campaign rate improves the effectiveness 
of smoking cessation efforts, resulting in a smaller 
proportion of the population remaining smokers. In 
addition, since the value of basic reproduction number 
𝑅𝑅0 is influenced by various factors including the anti-
smoking campaign rate, the comparison of 𝑅𝑅0 with 
various campaign rates is shown in Table 3. 

To quantify the relative impact of each parameter, 
we performed the normalized forward sensitivity 
analysis on 𝑅𝑅0. The sensitivity indices, presented in 
Table 4, reveal the exact magnitude and direction of 
influence for each parameter.

Table 3 Comparison of basic reproduction number with various campaign rates. 
Campaign rate (𝜙𝜙) 0.000 0.010 0.020 0.030 0.040 

Basic reproduction number (𝑅𝑅0) 4.527 2.352 1.578 1.182 0.940 
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Table 4 Sensitivity Indices of the basic reproduction number. 

Parameter Sensitivity Index Value Qualitative Impact 

Λ +1 +1 Highly sensitive 

𝜇𝜇 −
𝜎𝜎 + 𝜙𝜙 + 2𝜇𝜇 + 𝜇𝜇𝑠𝑠
𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠

 -1.002 Highly sensitive 

𝜇𝜇𝑠𝑠 −
𝜇𝜇𝑠𝑠

𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠
 -0.002 Insensitive 

𝜙𝜙 −
(𝜎𝜎 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠 + 1)𝜙𝜙

(1 − 𝜙𝜙)(𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠) 
0 at 𝜙𝜙 = 0 and 

-0.794 at 𝜙𝜙 = 0.04 
Insensitive at 𝜙𝜙 = 0. Becomes highly 

effective immediately above 0. 
𝛽𝛽 +1 +1 Highly sensitive 

𝜎𝜎 −
𝜎𝜎

𝜎𝜎 + 𝜙𝜙 + 𝜇𝜇 + 𝜇𝜇𝑠𝑠
 -0.996 Highly sensitive 

𝜉𝜉 0 0 Insensitive 
 

The key insight from the baseline scenario 
(at 𝜙𝜙 = 0) is that the parameters Λ , 𝜇𝜇 , 𝛽𝛽 ,and 𝜎𝜎  all 
have an absolute index value very close to 1, confirming 
that the model's stability is critically dependent on 
these fundamental rates in the absence of a public 
health campaign. In addition, 𝜙𝜙 is insensitive at the 
boundary of 𝜙𝜙 = 0  but quickly becomes highly 
sensitive when any intervention is implemented. 

The findings from this nonlinear mathematical 
model of smoking dynamics in Thailand carry 
significant policy implications for public health 
strategies. By demonstrating that the basic reproductive 
number 𝑅𝑅0 < 1  ensures local asymptotic stability of 
the smoking-free equilibrium, and that amplifying 
anti-smoking campaign rates substantially diminishes 
active smoker populations in simulations, policymakers 
can prioritize sustained, high-intensity interventions. 
These include nationwide media drives, school-based 
education, and community outreach, to drive 𝑅𝑅0 < 1. 
This approach not only curbs preventable mortality 
from lung cancer, cardiovascular diseases, and COPD 
but also yields economic dividends through reduced 
healthcare expenditures and enhanced workforce 
productivity. 

CONCLUSIONS 

In this study, we developed and analyzed a 
compartmental model to understand the dynamics of 
smoking behavior within a population. The population 
of individuals was divided into four classes (non-
smokers, active smokers, permanent quitters, and 
temporary quitters) without accounting for demographic 
factors such as age groups, gender, or socioeconomic 
status. The theoretical analysis focused on the local 
stability of the model's equilibrium points. We 
demonstrated the conditions under which smoking 
prevalence can either persist or decline. 

Furthermore, numerical simulations were 
conducted to illustrate the dynamics of smoking 
behavior in each class. We also determined the effect 
of the campaign rate while excluding other tobacco 

control policies, such as taxation, smoking bans in 
public places, or access restrictions. This showed that 
a higher campaign rate resulted in a more significant 
decline in smoking prevalence. These finding aligns 
with Thailand's smoking trends, where prevalence 
among individuals aged 15 and older declined to 
16.5% in 2024 from 17.4% in 2021 [21]. The decline 
highlights the effectiveness of tobacco control measures, 
even as e-cigarette use continues to rise. 

In conclusion, the stability analysis and 
numerical experimentation offer an understanding 
of the modeled smoking dynamics. This framework 
can be used as a useful tool to design and evaluate 
strategies for reducing smoking prevalence. 

Appendix 

To derive a dimensionless formulation of the 
system (1) by substituting  𝑆𝑆1� = 𝑆𝑆1/𝒩𝒩, 𝐼𝐼 ̅ = 𝐼𝐼/𝒩𝒩, 𝑄𝑄� =
𝑄𝑄/𝒩𝒩 , and 𝑆𝑆2� = 𝑆𝑆2/𝒩𝒩  into each equation of the 

system (1), then the equation 
𝑑𝑑𝑆𝑆1
𝑑𝑑𝑑𝑑

 becomes 

𝑑𝑑𝑆𝑆1
𝑑𝑑𝑑𝑑

=
𝑑𝑑(𝑆𝑆1�𝒩𝒩)
𝑑𝑑𝑑𝑑

= Λ − (1 − 𝜙𝜙)𝛽𝛽𝑆𝑆1�𝒩𝒩𝐼𝐼𝒩̅𝒩 − 𝜇𝜇𝑆𝑆1�𝒩𝒩 

                𝒩𝒩
𝑑𝑑𝑆𝑆1�
𝑑𝑑𝑑𝑑

= Λ − (1 − 𝜙𝜙)𝛽𝛽𝑆𝑆1�𝒩𝒩𝐼𝐼𝒩̅𝒩 − 𝜇𝜇𝑆𝑆1�𝒩𝒩 

                     
𝑑𝑑𝑆𝑆1�
𝑑𝑑𝑑𝑑

=
Λ
𝒩𝒩
− (1 − 𝜙𝜙)𝛽𝛽𝑆𝑆1� 𝐼𝐼𝒩̅𝒩 − 𝜇𝜇𝑆𝑆1�  

                     
𝑑𝑑𝑆𝑆1�
𝑑𝑑𝑑𝑑

= 𝜇𝜇 − (1 − 𝜙𝜙)𝛽𝛽𝑆𝑆1� 𝐼𝐼𝒩̅𝒩 − 𝜇𝜇𝑆𝑆1�  

Next, the equation 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 becomes 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑(𝐼𝐼𝒩̅𝒩)
𝑑𝑑𝑑𝑑

= (1 − 𝜙𝜙)𝛽𝛽(𝑆𝑆1�𝒩𝒩 + 𝑆𝑆2�𝒩𝒩)𝐼𝐼𝒩̅𝒩 − (𝜎𝜎 + 𝜙𝜙)𝐼𝐼𝒩̅𝒩
− (𝜇𝜇 + 𝜇𝜇𝑠𝑠)𝐼𝐼𝒩̅𝒩 

             𝒩𝒩
𝑑𝑑𝐼𝐼̅
𝑑𝑑𝑑𝑑

= (1 − 𝜙𝜙)𝛽𝛽(𝑆𝑆1�𝒩𝒩 + 𝑆𝑆2�𝒩𝒩)𝐼𝐼𝒩̅𝒩 − (𝜎𝜎 + 𝜙𝜙)𝐼𝐼𝒩̅𝒩
− (𝜇𝜇 + 𝜇𝜇𝑠𝑠)𝐼𝐼𝒩̅𝒩 

                  
𝑑𝑑𝐼𝐼 ̅
𝑑𝑑𝑑𝑑

= (1 − 𝜙𝜙)𝛽𝛽(𝑆𝑆1� + 𝑆𝑆2� )𝐼𝐼𝒩̅𝒩 − (𝜎𝜎 + 𝜙𝜙)𝐼𝐼 ̅

− (𝜇𝜇 + 𝜇𝜇𝑠𝑠)𝐼𝐼 ̅

Then, the equation 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 becomes 
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𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝑑𝑑(𝑄𝑄�𝒩𝒩)
𝑑𝑑𝑑𝑑

= 𝜉𝜉(𝜎𝜎 + 𝜙𝜙)𝐼𝐼𝒩̅𝒩 − 𝜇𝜇𝑄𝑄�𝒩𝒩 

               𝒩𝒩
𝑑𝑑𝑄𝑄�
𝑑𝑑𝑑𝑑

= 𝜉𝜉(𝜎𝜎 + 𝜙𝜙)𝐼𝐼𝒩̅𝒩 − 𝜇𝜇𝑄𝑄�𝒩𝒩 

                    
𝑑𝑑𝑄𝑄�
𝑑𝑑𝑑𝑑

= 𝜉𝜉(𝜎𝜎 + 𝜙𝜙)𝐼𝐼 ̅ − 𝜇𝜇𝑄𝑄�  

And the equation 
𝑑𝑑𝑆𝑆2
𝑑𝑑𝑑𝑑

 becomes 

𝑑𝑑𝑆𝑆2
𝑑𝑑𝑑𝑑

=
𝑑𝑑(𝑆𝑆2�𝒩𝒩)
𝑑𝑑𝑑𝑑

= (1 − 𝜉𝜉)(𝜎𝜎 + 𝜙𝜙)𝐼𝐼𝒩̅𝒩
− (1 − 𝜙𝜙)𝛽𝛽𝑆𝑆2�𝒩𝒩𝐼𝐼𝒩̅𝒩 − 𝜇𝜇𝑆𝑆2�𝒩𝒩 

                𝒩𝒩
𝑑𝑑𝑆𝑆2�
𝑑𝑑𝑑𝑑

= (1 − 𝜉𝜉)(𝜎𝜎 + 𝜙𝜙)𝐼𝐼𝒩̅𝒩
− (1 − 𝜙𝜙)𝛽𝛽𝑆𝑆2�𝒩𝒩𝐼𝐼𝒩̅𝒩 − 𝜇𝜇𝑆𝑆2�𝒩𝒩 

                     
𝑑𝑑𝑆𝑆2�
𝑑𝑑𝑑𝑑

= (1 − 𝜉𝜉)(𝜎𝜎 + 𝜙𝜙)𝐼𝐼 ̅ − (1 − 𝜙𝜙)𝛽𝛽𝑆𝑆2� 𝐼𝐼𝒩̅𝒩
− 𝜇𝜇𝑆𝑆2�  
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