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ABSTRACT 

This article presents an approach to object localization algorithms for pick-place operations in collaborative 
robots by utilizing conventional color segmentation in computer vision and k-means clustering. Adding the 
k-means clustering algorithm complements the color segmentation by distinguishing and grouping the 
sections of similar pixels; hence, object localization is more accurate. The order of pick-place operations of 
each cluster acquired from the proposed algorithm is prioritized based on 𝐿𝐿2 norm. Integrating the proposed 
framework provides a well-structured depiction of the localized objects, which is fundamental for successful 
pick-place operations. The TCP/IP communication framework via socket communication is established to 
facilitate data transmission between the robot and the host computer. The objective is to ensure that the 
robot's end effector performs as directed by the host computer by obtaining information on the pick-and-
place operation, including the localized coordinates, dimensions, the order of operations, and the pose of the 
objects of interest to the robot. In this experiment, a cobot arm is employed to autonomously pick and place 
objects with different shapes and colors in a workspace filled with diverse objects, requiring the robot to 
choose the closest objects to operate based on the data from the host computer. Our results demonstrate the 
effectiveness of this integration, showcasing the enhanced adaptability and efficiency of pick-place operations 
in collaborative robots. This study indicates 98% accuracy in pick-and-place operations with an average 
latency of 0.52 ± 0.1 s, indicating an improvement compared to the traditional algorithm without k-means 
clustering, which achieves an accuracy of 88%. Additional studies reveal that when incorporating pose 
estimation into the pick-place operations, the proposed algorithm's accuracy is 94%. The demonstration 
highlights the potential of leveraging machine learning algorithms and computer vision from the camera to 
perform flexible pick-place operations via socket communication. 
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INTRODUCTION 

The emergence of Industry 4.0 and the intelligent 
factory concept has introduced a range of significant 
technological advancements with the potential to 
facilitate the development of intelligent products and 
services [1]. Creating a versatile and adaptable assembly 
system necessitates integrating various enabling 
resources and technologies. Collaborative robots, or 
cobots, are emerging as a technology that offers enhanced 
flexibility and quick adaptation in assembly processes. 
Unlike traditional industrial robots, cobots can work 
alongside individuals without fencing or enclosure 

[2]. Human-robot collaboration (HRC) involves humans 
and cobots working together in the same workspace 

to execute manufacturing processes, leveraging the 
strengths of both for task completion [3]. Designing a 
collaborative human-robot workplace poses challenges, 
requiring adherence to specific design guidelines [4]. 
These processes can include pick-and-place tasks [5], 
assembly [6], screwing [7], or inspection [8]. Although 
cobots demonstrate exceptional performance in 
collaborating on complex tasks with humans, their 
reliance on expensive industrial-grade cameras presents 
limitations in flexibility and adaptability to diverse 
industrial applications. The cost-intensive nature of 
implementing and reprogramming robots and their 
limited ability to effectively navigate dynamically 
changing environments pose a significant obstacle 
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for small companies seeking to integrate cobots into 
production lines. 

By harnessing the potential of computer vision 
coupled with machine learning, cobots can potentially 
undertake more intricate tasks in collaboration with 
humans, thereby increasing the overall complexity of 
operations. Typically, engineers input basic commands 
or position controls in the native language of the robot 
to enhance ease of use, simplifying both operation and 
configuration [9, 10]. However, this also constrains 
their versatility, narrowing down the range of tasks 
they can effectively perform as these high-level 
languages are limited to a small number of applications 
[11, 12]. Compared to industrial-grade cameras, cost-
effective cameras in the current market are widely 
adopted to assist with machine vision tasks. This 
solution enables cobots to effectively collaborate 
with humans, performing product quality control 
and component assembly inspection tasks. Cobots 
can perceive their surroundings, perform tasks, and make 
informed decisions through network communication, 
achieving comparable performance to high-end 
devices. By setting up a system where cameras are 
linked to a host computer and provide data to the 
cobot through TCP/IP (Transmission Control Protocol/ 
Internet Protocol) [13], the computer can process the 
visual data captured by the webcams and transmit it 
to the cobot. With this cost-effective implementation, 
the cobot can effectively collaborate with the human 
operator and perform flexible tasks based on computer 
vision analysis. 

Pick-place operations play a fundamental role 
in various robotic applications. While these operations 
have become well-established in structured scenarios, 
challenges arise when dealing with parts of high 
variability or in less structured environments, especially 
for HRC. In such cases, pick-place operations are limited 
to mostly laboratory settings and have not been 
widely adopted in the market due to inefficiency, 
lack of robustness, and limited flexibility in existing 
manipulation and perception technologies [14]. 
Numerous studies have addressed these challenges 
to enhance HRC by enhancing object recognition, 
localization, and pick-and-place operations. In [15], 
computer vision and image transformation are used 
to determine the location of the objects to perform 

pick-place operations. Support Vector Machines (SVM) 
have been employed to classify successful and failed 
scenarios [16], while the Point Distribution Model 
(PDM) has been used to compute generalized success 
models [17]. In recent studies, most of the work 
focuses on machine learning algorithms developed 
where multiple stages of object classification are 

implemented, including deep learning and point 
cloud processing [18]. Another recent study explores 
object detection and recognition in the context of a 
pick-and-place robot, focusing on edge detection and 
feature extraction utilizing an Artificial Neural Network 
(ANN) [19]. Multiple Reinforcement Learning (RL) 

techniques [20] are also explored to perform task-
specific operations, such as pick-place operations 
without direct programming. These studies provide 
algorithms that yield high accuracy, providing the 
computational power is high and sufficient to 
operate such approaches. Meanwhile, the k-means 
algorithm has found application in various machine 
vision scenarios used with cobots, such as in pick-
and-place and sorting operations, notably in handling 
cherry tomatoes. The algorithm uses a color patch-
based visual tracking algorithm to precisely detect 
and pick ripe tomatoes [21]. Another relevant research 
area pertains to hand gesture recognition as an input 
command for the Bioroid Premium Robot, with studies 
exploring the use of k-means clustering and SVM 
techniques [22]. 

 While computer vision has been extensively 
utilized in various applications, its reliance on complex 
image processing algorithms and manual tuning 
parameters can lead to challenges in achieving high 
accuracy and robustness.  In specific scenarios, 
sophisticated approaches require substantial 
computational resources. By incorporating simpler 
machine learning algorithms into the vision system, 
it becomes feasible to optimize the framework. This 
involves decreasing reliance on intricate vision 
algorithms and harnessing the power of machine 
learning to enhance accuracy in object recognition, 
localization, and manipulation tasks. In this study, we 
propose an algorithm that enhances object localization 
accuracy by leveraging both machine vision and k-
means clustering. This study employs an eye-on-hand 
approach, focusing on retrieving and performing 
pick-place operations on a specific object chosen by 
the user and placing it in a designated target location. 
A camera is used for capturing images, and the algorithm 
utilizes computer vision and k-means clustering for 
improved performance. The host computer employs 
OpenCV for color segmentation, and the k-means 
algorithm identifies pick-and-place locations in order. 
The algorithm also determines the location of the 
desired object from others and prioritizes the sequence 
of retrieval based on its 𝐿𝐿2 norm. The implementation 
involves the targeted object's decision algorithm and 
pick-place operations, with predefined trajectories 
stored on the host computer. The coordinate and 
pose information is then transferred to the cobot to 
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manipulate the designated object precisely via socket 
communication. 

This article first introduces the experimental 
setup, followed by a methodology section that describes 
the algorithms and communication techniques 
employed in the study. The results and discussion 
section are presented next. Finally, the conclusions 
are given.  

MATERIALS AND METHODS 

Experimental setup 

In this experiment, a cobot arm is used to 
pick and place objects of different shapes and colors. 
The workspace contains multiple objects of varying 
shapes and sizes, and the robot must identify the 
objects of interest and prioritize them for picking and 
placing. The machine must be able to identify the 
objects of interest and prioritize the order of pick-
place operations such that the closest objects are 
selected first. In this study, Gofa IRB 15000 Cobot, 
manufactured by ABB equipped with an OAK-D LITE 
camera [23], was used to capture images of objects 
in eye-on-hand configuration, as shown in Figure 1. 
The IRB 15000 is capable of a payload of 5 kg, a reach 
of 1.62 m, a speed of up to 2.2 m/s, and a resolution 
of 0.02 mm. 

 
Figure 1 Cobot is equipped with an eye-on-hand 

camera to be used in this study of pick-place 
operations. 

Once the experimental session starts, the 
algorithm, which incorporates computer vision 
techniques and the k-means clustering algorithm for 
object localization, is executed. The computer vision 
component analyzes the visual data captured by the 
camera, extracting relevant information about the 
objects present in the scene. This information includes 
object shapes, positions, and other features necessary 
for object recognition and localization. The number of 
pick-place operations the cobot performs throughout 
the experimental session is counted and recorded. 
This measurement serves as a metric to evaluate the 

efficiency and effectiveness of the algorithm and the 
system's overall performance. It helps assess the ability 
of the algorithm to locate objects accurately, determine 
appropriate pick-and-place sequences, and successfully 
execute the manipulations. 

Methodology 

The proposed methodology for this study is 
divided into three main parts, as shown in Figure 2. 
First, the PC host is where the computation of the 
picking location takes place.  It consists of the 
preprocessing, the segmentation algorithm, and the 
k-means algorithm, respectively. Then, the host sends 
command data to the collaborative robot software 
via socket communication, which ensures efficient 
object manipulation and interaction. Finally, the cobot 
receives information about the objects of interest and 
commands related to picking. It then instructs the 
high-level controller to perform pick-place operations 
by calculating the inverse kinematics for each joint. 
The end effector in this study is a pneumatic actuator 
for the case that does not utilize pose estimation and 
a mechanical gripper for the case that introduces pose 
estimation, respectively. 

 
Figure 2 The proposed methodology and its associated 

diagram. 

a.  Computer vision:  Preprocessing and 
segmentation algorithm 

Before segmentation, denoising techniques 
aim to eliminate unwanted noise from images, enhancing 
the data quality and improving the accuracy of 
subsequent steps. In this study, noise reduction is 
performed to eliminate various types of noise, mainly 
Gaussian noise, ensuring that the input data is more 
reliable, leading to more precise and consistent 
segmentation results. Next, the image segmentation 
algorithm divides the input image into meaningful 
regions or segments, thereby identifying distinct objects 
or regions of interest. This initial segmentation step 
helps distinguish objects from the background and 
separate them for further analysis.  
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Here, the algorithm of the host computer 
primarily relies on OpenCV, a widely utilized computer 
vision library, for color segmentation to locate a 
specific-colored object captured by a camera. The 
filtered image is converted to the HSV color space, 
enabling the separation of color information from 
brightness. A mask is then created by setting lower 
and upper HSV thresholds, effectively isolating pixels 
with color of interest. The findContours function 
detects the contours of these specific pixels, focusing 
solely on the outer contours. The calculated value is 
compared to a predetermined threshold to assess if 
the object closely matches the desired shape to 
ensure further shape validation. For instance, one of 
the shape parameters is calculated using circularity, 
𝐶𝐶 =  4𝜋𝜋𝜋𝜋/𝑃𝑃2, where 𝐴𝐴 is the contour area, and 𝑃𝑃 is 
the contour perimeter, respectively. For the case of a 
spherical object, 𝐶𝐶 is close to 1. 

In addition, to detect the location and estimate 
the pose of non-circular, for instance, rectangular 
objects, the minAreaRect function in OpenCV is utilized. 
The minAreaRect function in OpenCV is used to find 
the minimum area rectangle that encloses a set of 
points. This methodological approach involves tracing 
a continuous and unbroken curve that precisely 
outlines the spatial boundaries of the square under 
examination. It can detect and localize non-circular 
objects, such as rectangles or bounding boxes of the 
objects in an image. The center, width, and height of 
the rectangular object can be identified, as well as 
the decision of the picking location of the objects. In 
terms of orientation, the object's rotation angle is 
also utilized. This is a particular case so that the 6th 
joint of the cobot can be adequately rotated prior to 
picking the objects according to the z-axis rotation 
(Rz). The Rz transformation benefits the robot arm 
that uses a gripper to pick up objects. Further, this 
can also perform pose estimation, determining the 
position and orientation of identified objects. 

These two segmentation algorithms are used 
to identify the objects' types, shapes, locations, 
orientations, and poses.  With slight tuning of 
parameters, the algorithm can identify the objects' 
properties. For instance, contours with circularity 
above the threshold can differentiate one object from 
another or the rectangular object with its associated 
pose. Those segmented images will then be used  
to split the data into small clusters of images.  

Subsequently, the objects are grouped into data 
clusters that will be sent as input to the k-means 
clustering algorithm. 

b. K-means algorithm 
The k-means algorithm is employed to perform 

clustering of the objects, deciding the order of operation 

into subtasks using the L-2 norm.  Following the 
segmentation of the image, the k-means algorithm is 
subsequently employed. K-means is an unsupervised 
machine-learning algorithm commonly used for 
clustering tasks. The k-means clustering algorithm is 
notable for its simplicity, accessibility to implementation, 
and efficiency, as it can process large datasets that 
can also be scaled. In addition, it is incredibly versatile 
and can be used with varying scales and dimensions. 
However, k-means clustering has drawbacks as the 
algorithm is highly sensitive to the predefined k 
values, which is challenging to determine. Outliers 
also impact the results, which necessitate pre-processing 
before applying k-means clustering to maintain accuracy. 
One of the main disadvantages of the algorithm is 
that it is highly susceptible to converging to local 
minima, posing a challenge in cases where its data, 
especially for each complex cluster, is not well-
separated. In object localization, the k-means algorithm 
helps in grouping similar pixels. By iteratively assigning 
pixels to different clusters and optimizing their 
centroids, the k-means algorithm is also applied to 
the data to find the characteristics of each object and 
perform clustering. The k-means algorithm is an 
algorithm that groups the given data into 𝑘𝑘 clusters. 
When this algorithm receives 𝑛𝑛 objects, it is divided 
into 𝑘𝑘 groups that are less than or equal to 𝑛𝑛, and 
each group forms a cluster. Here, 𝑘𝑘 is determined 
from image segmentation acquired from Section a. 

 Each cluster represents a centroid of potential 
pick-and-place location. The algorithm iteratively 
changes the location of the centroid, and it runs until 
the centroids converge. In other words, to achieve 
optimal clusters, the variance in the distance difference 
between each cluster and the data within that cluster 
must be minimized [24, 25]. The objective function 
of k-means is written as: 

𝐽𝐽 =  ∑ ∑ �𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑗𝑗�
2⬚

𝑥𝑥𝑖𝑖∈𝐶𝐶𝑗𝑗
𝑘𝑘
𝑗𝑗=1  ��𝑥𝑥ᵢ −  𝜇𝜇ⱼ��

2
 (1) 

where 𝑖𝑖 iterates over the data points, j iterates over the 
clusters, 𝑥𝑥𝑖𝑖 is a data point, and 𝜇𝜇𝑗𝑗 is the centroid of the 
𝑗𝑗-th cluster. The �𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑗𝑗� represents the Euclidean 
distance between a data point and the centroid. 𝑘𝑘 is 
number of clusters. 

c. Combined algorithm to obtain order of 
operation 

The combined algorithm is utilized to send the 

commands the cobot to decide the order of operation 
for picking and placing objects, streamlining its 
manipulation and placement tasks. Combining image 
segmentation and the k-means algorithm is essential 
to indicate precise object localization. First, the image 
segmentation algorithm identifies potential objects 

https://doi.org/10.60101/jarst.2023.254153
https://ird.rmutt.ac.th/


5 

 
©2024 Institute of Research and Development, RMUTT, Thailand 

J Appl Res Sci Tech 2024;23(1):254153 

DOI: 10.60101/jarst.2023.254153 

 

or regions of interest in the scene. Then, the k-means 
algorithm refines this localization by grouping together 
pixels with similar characteristics and indicating the 
objects' location. Snippets of pictures are used in the 
k-means algorithm for segmentation to better highlight 
the features of the object by separating distinct clusters 
representing different features within the image frame. 
The proposed algorithm is designed to impose fewer 
restrictions on the color segmentation threshold. K-
means clustering is less affected by specific color values, 
as it focuses on overall color distribution. Combining 
these two algorithms improves object segmentation 
accuracy, mainly when color segmentation falls short. 

Finally, the 𝐿𝐿2  or Euclidean norm is employed 
to measure the distance between the center of the 
robot gripper and the centroid of each cluster. The 
process determines the object that has the minimum 
norm based on the picking location and the gripper 
location. This prioritization of sequence allows the 
cobot to minimize travel time by optimizing the path 
to be the shortest distance of operation. This approach 

aims to improve the accuracy and reliability of object 
localization significantly, making subsequent tasks 
like object recognition, tracking, and pick-and-place 
operations much more efficient. The order of pick-and-
place operations and coordinate and pose estimations 
are then transmitted to the cobot software using socket 
communication. 

 
Figure 3 TCP/IP socket communication between 

host computer and client cobot (adapted 
from [26, 27]). 

d. Socket communication to cobot 
The communication process starts with 

establishing TCP/IP as a communication channel to 
transmit data between the host computer and the 
cobot, as illustrated in Figure 3, through a Local Area 
Network (LAN) to ensure the integrity and security 
of the data transmission. Specifically, TCP/IP socket 
communication is chosen due to its established 
reliability and broad compatibility across diverse 
devices [15, 26, 27]. The host is responsible for creating 
an endpoint that clients can connect to while the client 
component initiates the connection to the server. The 
TCP/IP socket connection facilitates the data exchange 
and instructions between the server computer and the 

client cobot. The server processes visual information, 
generates commands, and transmits them to the client 
cobot, RobotStudio, enabling the cobot to execute tasks 
based on the computer vision analysis results obtained 
from the server. 

The main objective of this communication setup 
is to enable the transfer of command information from 
the server computer, where computer vision and pick-
place operation tasks are executed, to the cobot client 
for subsequent execution. Socket communication was 
selected as the communication mechanism in this study 
to facilitate information exchange between the host 
computer and the client IP ports. The client-server 
setup distinguishes a clear division of responsibilities: 

the client, or host computer in this case, initiates 
communication tasks and sends data, while the server, 
represented by the cobot, awaits incoming connections 
and processes the requests it receives.  

The host computer initializes a socket 
communication to transmit the data in a binary socket 
package, including the location coordinates to perform 
pick place, pose, and object orientation to the Robot 
Studio. The send() and recv() functions transmit and 
receive data between devices. The Robot Studio, 
utilizing the RAPID programming language designed 
for ABB industrial robots and cobots, receives and 
interprets the control data, facilitating the command 
and regulation of cobots' positional adjustments and 
operation. The cobot then sends the signal back once 
the data is interpreted and performed as the data is 
sent accordingly. This coordinated control framework 
facilitates the cobot to navigate precisely to the 
specified location and execute the requisite actions 
to grasp the targeted object successfully. 

e. High-level controller to execute pick-place 
operations and cobot kinematics. 

To perform precise and accurate manipulation 
of the designated object, the high-level controller 
within a cobot framework functions as the processing 
task. It receives and interprets commands from the 
host via TCP/IP. These commands serve as precise 
target coordinates within the operational workspace 
of the cobot. The high-level controller's primary 
responsibility entails the formulation and execution 
of a trajectory plan constrained by kinematic limitations 
and spatial considerations. The trajectory planning 
focuses on devising efficient and obstacle-avoidant 
trajectories for the end-effectors of the cobots, enabling 
it to reach specified target positions within its workspace. 
In low-level operation, inverse kinematics entails the 
mathematical computation of joint angles required to 
position the end-effector of the cobot precisely at a 
designated location and orientation. It serves as the 
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connection between high-level task objectives and 
the joint space of the cobot, facilitating precise control 
of its movements. Subsequently, the controller activates 
the end-effector system to complete the pick-place 
operations.  

During this stage, the controller monitors 
sensory feedback, particularly force-related data, to 
ensure objects' secure and accurate manipulation. In 
addition, collision detection is pivotal in ensuring 
safety by continuously monitoring the environment, 
identifying potential collisions with obstacles or other 
objects, and adjusting the trajectory or stopping its 
motion to prevent accidents and equipment damage. 
After a sequence of pick-place operations is completed, 
the information is sent back to the host and waits for 
the subsequent tasks. 

The proposed methodology of this study is 
summarized as follows: 

1. Obtain camera frame and perform 
preprocessing. 

2. Perform image segmentation, which 

includes: 
a. Color thresholding, clustering of contours 
using a geometrical approach. 
b.  K-means clustering based on a. 
c. combining a and b to identify each cluster. 

3. Determine the order of pick-place operations 

of the cluster based on 𝐿𝐿2 norm. 
4. Transmit the localized data to the cobot 

to perform pick-place operations. 
5. Execute pick-place operations and wait 

for confirmation of the operation from the 
cobot before repeating the process from 
step 1. 

RESULTS AND DISCUSSIONS 

This study randomly positions various objects 
with different colors (blue, grey, red, black) and shapes 
(stars, rectangles, cylinders, spheres, hexagons) within 
the workspace. This study specifically focuses on 
demonstrating the accuracy of identifying red spherical 
and rectangle objects to assess the proposed algorithm. 
The host computer, equipped with a proposed algorithm, 
successfully determines the correct positions of the 
indicated objects and can locate the closest one 
concerning the location of the pneumatic suction. A 
validation process is conducted to evaluate the 
precision of the pick-and-place operations by assessing 
the performance of picking up the designated red 
spheres. A total of 500 pick-and-place operations with 
a speed of 100 mm/s are performed, and each operation 
is categorized as either a correct or incorrect pick-up. 
The computer vision algorithm is initially applied 

without k-means clustering, resulting in an observed 
accuracy of 87.4%. 

After that, the proposed algorithm is implemented 

to detect the positions of the targeted red spheres 
during the validation procedure. Changes have 
significantly influenced the system's accuracy in 
lighting conditions and pick-place operating speed. 
Additionally, through further analysis, the sensitivity 
of the proposed algorithm can be fine-tuned by 
adjusting the threshold of location information within 
each frame window of capture. In this study, the 
algorithm was applied to every 15 consecutive frames 
from the camera to identify the optimal location of pick-
and-place operations, resulting in an average response 
time of 0.52 ± 0.1 seconds for each pick-place operation. 
The cobot successfully executes the pick-and-place 
tasks with high accuracy, picking up the red spheres 
based on the identified coordinates and achieving an 
accuracy rate of 98.2% (See Figure 4). Image segmentation 
and clustering can accurately identify the number and 
location of clusters. The proposed algorithm performs 
better than the one without incorporating k-means 
clustering. The pick-place operation  is illustrated in 
Figure 5. All the errors were associated with the 
proposed localized algorithm, which sometimes could 
not identify the objects from the captured images. 

   
 (a) (b) 
Figure 4 A snippet frame from the algorithm (a) after 

image segmentation and clustering of k-
means algorithm and (b) resulting location 
of the picking operation. 

    
 (a) (b) (c) (d) 
Figure 5  A pick-place operation process (a,b,c,d) with 

pneumatic suction on specified objects of 
interest. 

Variations in lighting conditions, occlusions, 
or challenging shapes may also have contributed to 
this source of error. In conditions with reduced 

https://doi.org/10.60101/jarst.2023.254153
https://ird.rmutt.ac.th/


7 

 
©2024 Institute of Research and Development, RMUTT, Thailand 

J Appl Res Sci Tech 2024;23(1):254153 

DOI: 10.60101/jarst.2023.254153 

 

lighting, specifically at 1/3 of the standard lighting 
power, the accuracy of the pick-place operation is 
reduced to 67.1%. The primary factor contributing to 
the reduced accuracy is the inaccuracy of the color 
segmentation, accounting for 35.2% of the errors. 
Under diminished lighting conditions, the pick-and-
place operation struggled to accurately identify the 
correct color range, leading to a decline in overall 
performance. Despite this limitation, the k-means 
clustering portion of the algorithm proved to be 
extremely helpful in object localization, enabling 
the cobot to successfully grasp objects even though 
they may possess the incorrect color or shape from 
error in segmentation. Another error occurs when the 
operating speed of the cobot is increased. The average 
response time in this study can be reduced through 
further optimization of the framework, thereby 
mitigating errors at higher jogging speeds of the cobot 
arms. 

Another study involves object detection and 
pose estimation used along with machine vision to 
extract relevant information, such as key points for 
the end effector to grasp the specific part of the 
object precisely. Here, the pick-place operation of 
the rectangular object with a mechanical gripper is 
demonstrated. Once the cobot receives the coordinate 
data and performs inverse kinematics of the joint 
angles, the resulting angle of the object pose is sent 
to the cobot. The rotation of the mechanical gripper is 
performed to precisely place the cobot on the specific 
location and orientations concerning the workpiece. 
This demonstration is performed with the pick-place 
operations of the rectangular object, as seen in 
Figure 6 (a). The accuracy of this study is found to be 
94% from a total of 200 operations at a speed of 100 
mm/s, slightly lower than the study without pose 
estimation. This application creates a framework for 
precise object detection, which is crucial in applications 
like manufacturing and automation. Further applications 
of this study can be applied to critical points and image 
localization across a broad spectrum of industries. For 
instance, object detection instead of image segmentation 
can be computationally intensive to obtain the 
preliminary position of the objects of interest. K-
means clustering is then applied to the image frame 
to obtain a more refined feature and segment the 
object boundaries for the pick-place operations. In 
this preliminary study, it is found that using You 
Only Look Once (YOLO) v8 [28], which is a well-known 
efficient convolutional neural net object detection 
along with k-means clustering of the image frame, 
could be used to obtain the exact position and pose of 
the object of interest for grasping accordingly. Figure 

6 (b) shows that the proposed implementation starts 
with object detection to identify the local coordinates 
of the object of interest. The algorithm is then passed 
on to the k-means clustering, where the segmentation 
occurs, resulting in feature extraction and pose 
estimation for pick-place operations. 

  
 (a) (b) 
Figure 6 A snippet frame from the algorithm with 

pose estimation for the mechanical gripper. 

CONCLUSIONS 

This study proposes an approach to pick-and-
place operations using computer vision. Integrating the 
computer vision algorithm allows the cobot to perceive 
and understand its surroundings by extracting relevant 
visual information. Utilizing the k-means clustering 
algorithm complements the computer vision component 
by offering a structured depiction of the localized 
objects, which are fundamental for accurate pick-and-
place operations. The host computer then establishes 
a TCP/IP communication channel and transmits data to 
a cobot through a socket connection, enabling real-time 
command data exchange. The experimental results 
demonstrate the effectiveness of this integration, 
showcasing the enhanced adaptability and efficiency 
of pick-and-place operations in cobots. This research 
performs pick-and-place operations with 98.2% accuracy, 
achieving an average response time of 0.52 ± 0.1 seconds, 
compared to the original algorithm of 87.4% accuracy. 
Further study that includes pose estimation in pick-
and-place operations demonstrates 94% accuracy. The 
study emphasizes the viability of employing a k-means 
algorithm in addition to image segmentation to 
execute pick-and-place operations by utilizing socket 
communication, enabling seamless data transfer 
between the cobot and the software, thereby enhancing 
overall efficiency. 
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