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ABSTRACT 

In this study, a polystyrene (PS)/nano-TiO2 hybrid was prepared by a mini-emulsion polymerization process to 
improve the photocatalytic properties when the crosslinking agent was added. N, N'-methylenebis (acrylamide) 

(MbA) was used as a crosslinking agent. The effect of a crosslinking agent on the photocatalytic properties was 
studied. The diameter, morphology, and photocatalytic properties of the samples were characterized and discussed. 
The methylene blue discoloration was monitored at 660 nm by a spectrophotometer. The result showed that 
the L* value from the Hunter color scale for 7 wt% TiO2-PS/0.25 wt% MbA was highest at 73.73. It was noticed that 
the 7 wt% TiO2 - PS/0.25 wt% MbA hybrid gave the highest photocatalytic properties. The FE-SEM confirmed the well-
defined structure with a spherical shape and network formation to improve the photocatalytic properties. The 
diameter and morphology of the PS/TiO2 hybrid were in the range of 76 nm to 95 nm by using a field emission 
scanning electron microscope (FE-SEM). The particle size of the 1 wt% TiO2 - PS/0.25 wt% MbA was 76 nm, which 
was smaller than that of the pristine PS of 88 nm. The particle size of the 7 wt% TiO2 – PS/0.25 wt% MbA hybrid was 
increased by 25%. The HR-TEM image of the PS/TiO2 hybrid was studied to confirm the encapsulation of TiO2 
particles in the hybrid. The FFT image of PS/MbA/TiO2 7 wt% demonstrated the crystalline structure of TiO2 (dot) 

and the amorphous structure of PS (ring). FT-IR spectroscopy confirmed the presence of the Ti-O functional group 
in the PS hybrid spectra. It was noticed that the TiO2 particles were successfully encapsulated in the PS/TiO2 hybrid. 
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INTRODUCTION 

Inorganic-organic nanocomposites in which 
inorganic (metal oxide) fillers are uniformly dispersed 
in a polymer matrix have developed strength, toughness, 
processability, dimensional stability, and wear properties 

[1-4]. The properties of polymer nanocomposites are 
affected by the type, size, shape, and concentration 
of incorporated particles, as well as their interaction 
with the polymer [5-7]. 

Polymer hybrids are versatile materials in 
inorganic-organic nanocomposites.  It was the 
combination of two types of polymers and inorganic 
nanoparticles to generate advanced materials with 
possessing properties [8-11]. Therefore, hybrids have 
been successfully used for various stable inorganic 
colloids free from aggregation, such as titanium oxide, 
zinc oxide, magnetic and metal nanoparticles. Mini-
emulsion polymerization is one of the common methods 
for preparing polymer hybrids in colloid systems [12-17]. 

Titanium dioxide is a widely studied material 
due to its unique optical, electrical, and chemical 
properties. It is well-known for its photovoltaic and 
photocatalytic properties, along with its applications 
in the paint, paper, and food industries as pigment, 
filler, or whitener [18-20]. In order to improve the 
photocatalytic behavior, it is necessary to modify 
the surface of TiO2 nanoparticles [21]. This work 
aimed to synthesize and characterize a novel hybrid 
material based on TiO2 nanoparticles. The TiO2 particles 
were modified through a mini-emulsion polymerization 
process in order to improve the surface area and 
photocatalytic behavior. 

MATERIALS AND METHODS 

Materials 

Styrene monomer (99%, Sigma-Aldrich) was 
purified by passing through aluminum oxide before 
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being used. Titanium dioxide (TiO2 99%, US Research 
Nanomaterials), aluminum oxide basic (Al2O3, Sigma-
Aldrich), hexadecane (HD, 99%, Sigma-Aldrich), sodium 
dodecyl sulfate (SDS, 99%, Sigma-Aldrich), potassium 
persulfate (KPS, 99%, Sigma-Aldrich), and N, N'-
methylenebis (acrylamide) (MbA, 99%, Sigma-Aldrich) 

were used as received. Deionized water (DI water) was 
purified by a MicraTM water purifier from ELGA LabWater.  

Preparation of polystyrene hybrids 

The mini-emulsion polymerization of the 
polystyrene hybrid was synthesized as follows: 5.00 g 
of styrene monomer and 0.20 g of hexadecane were 
mixed in the presence/absence of 0.25 g of MbA. 0.06 
g of SDS was dispersed in 20.0 cm3 of water. Then, the 
dispersion was mixed with the monomer mixture in 
the flask and stirred under nitrogen gas for 15 minutes. 
The flask was sonicated (130 W and 60 % amplitude) in 
an ice bath for 15 minutes. After raising the mini-emulsion 
temperature to 70 °C, 0.083 g of KPS was injected into 
the flask. The reaction time was carried out for 4 hours. 
The mini-emulsion was achieved by cooling in an ice 
bath. The experimental details for the syntheses of PS 
and PS/MbA/TiO2 are given in Table 1. 

Table 1 The experimental details of the syntheses of 
PS and PS/MbA/TiO2. 

Sample name MbA (% wt) TiO2 (% wt) 

PS - - 
PS/TiO2 10% - 10 
PS/MbA 0.25  - 
PS/MbA/TiO2 1% 0.25  1 
PS/MbA/TiO2 3%  0.25  3 

PS/MbA/TiO2 7% 0.25  7 
Neat TiO2 - 10 

Characterization 

1. Fourier-transform infrared spectroscopy 
(FT-IR) 

The functional and bonding structures of the 
PS hybrid were analyzed using a PerkinElmer Frontier 
spectrometer from the USA. The samples were 
performed in the range of 4000-400 cm-1. 

2. Field Emission Scanning electron microscope 
(FE-SEM) 

The morphology of the PS hybrid was observed 
on a Jeol JSM-7600F from Japan. The particle size 
distribution was measured using ImageJ software. 

3. High-resolution Transmission electron 
microscope (HR-TEM) 

The morphology and crystalline structure of 
the PS hybrid were determined on a Jeol JEM-3100F 
from Japan. 

Photocatalytic behavior 

The photocatalytic activity of the PS hybrid 
was examined by observing the discoloration of MB 
under UV-A (365 nm) TL-K 40W/10-R light from the 

Netherlands. 1 mL of PS hybrids was prepared in 10 ppm 
of the MB solution. The samples were tested without 
purification. The UV light intensity was 6.0 mW/cm2. 
The MB discoloration was monitored at 660 nm using 
an UltraScan Pro Color spectrophotometer with a 512-
element diode array (from HunterLab, USA). 

RESULTS AND DISCUSSION 

 FT-IR spectroscopy was employed to analyze 
the functional group and bonding of the PS hybrid. 
Figure 1 presents the FT-IR spectra of PS, PS/MbA/TiO2 
with various 1, 3, and 7 wt% of TiO2 contents. It was found 
that the broad peak at 3423 cm-1 corresponds to the 
stretching of the surface hydroxyl or absorbed water 

[22, 23]. The main absorption bands of PS over the 
2800-3100 cm-1 range were attributed to C-H stretching 
vibrations in the main chain and aromatic rings [23]. 
The absorption bands at 3025, 3063, 3084, 1600, and 
1492 cm-1 were assigned to aromatic ring vibrations. 
The absorption bands at 2921, 2848, and 1451 cm-1 were 
ascribed to the aliphatic backbone of the 
polystyrene macromolecule. The characteristic 
absorption bands of Ti-O particles were  observed at  
692 cm-1 [22]. It was shown that the   absorption bands
of the PS matrix were not affected by the 
encapsulated TiO2 particles. It concluded that the 
TiO2 was presented in PS hybrids.  
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Figure 1 FT-IR spectra of PS, PS/MbA/TiO2 with various 

1-7 wt% TiO2 contents. 

FE-SEM was employed to observe the morphology 
of the PS hybrids. Figure 2 demonstrates the SEM images 
of PS hybrid TiO2 1, 3, and 7 wt% and their particle size 
distribution. The result shows that the particle diameter 
of the PS/MbA was 76 nm, as presented in Figure 2a. 
Moreover, the PS/MbA/TiO2 1 and 3 wt% were similar 
at 88 nm, as shown in Figures 2c and 2e. For 7 wt% TiO2 
in Figure 2g, the particle diameter of PS/MbA/TiO2 was 
increased to 95 nm, which increased by 25%. The particle 
size distribution of the PS and PS hybrids demonstrated 
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a narrow size distribution, as seen in Figures 2b, 2d, 
and 2f. It concludes that the encapsulation of TiO2 in 
the PS mini-emulsion caused an increase in the 

final particle size of the hybrid. This was due to an 
increase in the amount of TiO2 in the PS hybrid [24].

   

 

 

 
Figure 2 SEM images of PS hybrids and their particle size distribution of (a-b) PS, (c-d) PS/MbA/TiO2 1 wt%, 

(e-f) PS/MbA/TiO2 3 wt%, and (g-h) PS/MbA/TiO2 7 wt%. The scale bar was 100 nm. 

 

a 

60 70 80 90 100 110 12
0

2

4

6

8

 

 

%
D

is
tri

bu
tio

n

Pratical size(nm)

76nm±13nm

60 70 80 90 100 110 12
0

2

4

6

8

 

 

%
D

is
tri

bu
tio

n

Pratical size(nm)

76nm±13nmc 

60 70 80 90 100 110 120
0

2

4

6

8

10

12
88nm ±12nm

 

 

%
D

is
tri

bu
tio

n

Pratical size(nm)

60 70 80 90 100 110 120
0

2

4

6

8

10
95nm ±15nm

 

 

%
D

is
tri

bu
tio

n

Pratical size(nm)

e 

g h 

%
D

is
tri

bu
tio

n 

%Particle size(nm) 

60 70 80 90 100 110 12
0

2

4

6

8
88nm ±12nm

 

 

%
D

is
tri

bu
tio

n

Pratical size(nm)

b 

%
D

is
tri

bu
tio

n 

%Particle size(nm) 

f 

%
D

is
tri

bu
tio

n 

%Particle size(nm) 

d 
%

D
is

tri
bu

tio
n 

%Particle size(nm) 

https://ird.rmutt.ac.th/
https://doi.org/10.60101/jarst.2023.253757


4 

 
©2023 Institute of Research and Development, RMUTT, Thailand J Appl Res Sci Tech 2023;22(3):253757 

DOI: 10.60101/jarst.2023.253757 

The HR-TEM was employed to demonstrate 
the morphology and crystalline structure of the PS 
hybrids. The sphere shape of the PS matrix was found 
with a few large particles due to the free radical 
polymerization, as seen in Figure 3a. Some TiO2, 

moreover, was encapsulated in the PS hybrid. Figure 
3b presents the Fast Fourier Transform (FFT) image of 
PS/MbA/TiO2 7 wt% at magnification 500,000 which 
demonstrates the crystalline structure of TiO2 (dot) 

and the amorphous structure of PS (ring).

 
Figure 3 (a) HR-TEM image of PS/MbA/TiO2 7 wt%, (b) Fast Fourier Transform (FFT) of PS/MbA/TiO2 7 wt%.

 
Figure 4  The discoloration of MB under UV light of 

PS/MbA/TiO2 0-7 wt% in 1 h. 

Table 2 The Hunter L*, a*, b* color scale for PS/MbA/TiO2 
0-7 wt% at 1 h. 

PS/MbA/TiO2 0 wt% L* a* B* 
0min 53.59 -10.89 -25.78 

60min 54.15 -10.26 -23.87 
PS/MbA/TiO2 1 wt% L* a* B* 

0min 65.64 -15.38 -21.85 
60min 65.51 -13.94 -19.67 

PS/MbA/TiO2 3 wt% L* a* B* 
0min 69.89 -15.72 -19.00 

60min 73.73 -11.24 -12.49 
PS/MbA/TiO2 7 wt% L* a* B* 

0min 73.52 -14.88 -15.67 
60min 73.73 -11.24 -12.49 

The photocatalytic activity of PS/MbA/TiO2 1-7 

wt% was investigated by observing the discoloration 
of MB under UV light by measuring the Hunter L*, a*, 
b* color scales; for the “L*” scale a low number (0-50) 

presents dark and a high number (51-100) presents 
light. For the “a*” scale a positive number presents red 
and a negative number presents green. For the “b*” scale 

a positive number presents yellow and a negative 
number presents blue. Figure 4 demonstrates the 
discoloration of MB of PS/MbA/TiO2 (0-7 wt%) for  
1 h. It was found that the color of MB for PS/MbA was 
not changed due to the absence of a catalyze. For 1 wt% 

and 3 wt% of TiO2 in PS hybrid, the MB color was slightly 
decreased, as seen in Figure 4. Table 2 shows the Hunter 
L*, a*, b* color scales for PS hybrids at 60 minutes. The 
result shows that in all the samples at 0 minute the 
L* was different due to the various amounts of white 
TiO2. The negative b* scale was focused on due to the 
indicated blue color of MB. The b* value of the 
PS/MbA/TiO2 7 wt% was higher than PS/MbA due to 
the photocatalytic activity of the TiO2 hybrid, as shown 
in Table 2. Moreover, the a* value is presented as less 
negative than increasing the photocatalytic degradation. 
An increased amount of TiO2 improved the photocatalytic 
efficiency. It concludes that the TiO2 was successfully 
integrated with PS nanoparticles via mini-emulsion 
and showed photocatalytic properties. 

CONCLUSION 

A Polystyrene (PS)/nano-TiO2 hybrid was 
successfully investigated by the mini-emulsion 
process. To study the effect of crosslinking agents on 
the photocatalytic properties of the hybrid, N, N'-
methylenebis (acrylamide) (MbA) was added to the 
colloid system.  The diameter, morphology, and 
photocatalytic properties of the samples were 
characterized and discussed. It was noticed that the 
7 wt% TiO2 -PS/0.25 wt% MbA hybrid gives the highest 
photocatalytic properties. The FE-SEM confirmed 
the well-defined structure with a spherical shape and 
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network formation to improve the photocatalytic 
properties. The diameter and morphology of the 
PS/TiO2 hybrid were in the range of 76 nm to 95 nm. 
In addition, the encapsulation of TiO2 in the PS hybrid 
may result in an increase in the particle size of the 
hybrid. FT-IR spectroscopy was employed to analyze 
the functional group and bonding of the PS hybrid. 
The results showed that the absorption bands of the 
PS matrix were not affected by the encapsulated 
TiO2 particles. It could be confirmed that the TiO2 
was encapsulated in PS hybrids. HR-TEM image of the 
PS/TiO2 hybrid was studied to confirm the encapsulation 
of TiO2 particles in the hybrid. It was noticed that the 
TiO2 particles were successfully encapsulated in the 
PS/TiO2 hybrid. 
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