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ABSTRACT 

The purpose of this research project is to develop new theories, discuss, and extend some recent common fixed 
point results established when the underlying ambient space is an extended b-metric space and the contraction 
condition involves a new class of ψ-φ-C-contraction type mappings where ψ is the altering distance function 
and φ is the ultra-altering distance function. The unique fixed point theorems for such mappings in the setting 
of ψ-φ-complete metric spaces are proven. We also prove the fixed point theorem in partially ordered metric 
spaces. Moreover, some examples supporting the main results are given. Our results extend and generalize 
corresponding results in the literature. The start of the development of the theory of fixed points is tied to the 
end of the 19th century. The method of successive approximations is used in order to prove the solution's 
existence and uniqueness at the beginning of differential and integral equations. This branch of nonlinear 
analysis has been developed through various classes of spaces, such as metric spaces, topological spaces, 
probabilistic metric spaces, fuzzy metric spaces, and others. In developing the theory of fixed points, 
achievements are applied in various sciences, such as optimization, economics, and approximation theory. A 
very important step in the development of fixed point theory was taken by A.H. Ansari through the introduction 
of a C-class function. Using C-class functions, we generalize some known fixed point results, and Kamran et al. 
introduced a new intuitive concept of distance measure to extend the notion of b-metric space by further 
weakening the triangle inequality.  

Keywords: Fixed point, Extended b-metric space, C-class function  

INTRODUCTION 

It is widely known that Thailand has a strategy 
to develop the nation using science and technology, 
particularly in applying scientific understanding to 
biotechnology, materials science technology, and 
suitable use of electronic and computer technology. 
Therefore, acquiring information is crucial for 
academic success, and it is evident that mathematics 
is an essential instrument for discovering and growing 
those above. Using knowledge of mathematics to 
create a mathematical model to predict the effect of 
soil temperature on plant growth, for example, In 
2020, Boonwan J, et al. [3] created a mathematical 
model to predict soil temperature for the growth of 
chrysanthemum sprouts. However, fixed point theory 
is another tool used to solve many nonlinear problems 
in mathematical analysis. In 1922, Stefan Banach [17] 

began modern functional analysis and subsequently 
studied how to extend this principle for generalized 
contraction transmission in many different ways. 
Later, many researchers extended metric spaces to 

generalize metric spaces such as partial, G-metric, 
and cone metric spaces. For fixed point theorems in 
metric spaces, see [2, 4, 6, 10-13, 15, 16] and 
references therein. The concept of a b-metric space 
was introduced by Bakhtin [7], and Czerwik [9] 
generalized the structure of metric space by weakening 
the triangle inequality called a b-metric space and 
proved some results of the fixed point theorem in b-
metric spaces. Further, many authors use the concepts 
for trade measures [5] and to measure ice floes [8]. 
In this context, Kamran and his co-authors [14] 

introduced the concept of extended b-metric space 
by further weakening the triangle inequality. Later 
in 2014, Ansari [1] introduced the concept of C-class 
functions and proved the unique fixed point theorems 
for specific contractive mappings concerning the C-
class functions. 

Following the above results, the motivation 
of this paper is to introduce the article's idea on some 
fixed point theorems for C-class functions in b-metric
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spaces [18] to cover more general cases. We then 
prove the existence of unique fixed points in extended 
b-metric space. Further, some examples supporting 
the main results are given. 

MATERIALS AND METHODS 

This section has compiled definitions and 
relevant theorems, a tool for further study and 
research in the main results. 
Definition 2.1. [14] Let X be a nonempty set and 
θ:X×X→ [1,∞). A function dθ:X×X→ [1,∞) is called an 
extended b metric space, if for all x,y,z ∈X , it satisfies 

EbM 1. dθ(x,y) = 0 if and only if x=y 
EbM 2. dθ(x,y )= dθ(y,x)  
EbM 3. dθ(x,z)≤θ(x,z)[dθ(x,y)+ dθ(y,z)]  

 (X, dθ) is called an extended b-metric space. 
To show the concreteness of the idea of 

extended b-metric space, we give some examples of 
extended b-metric space in the following: 
Example 2.2. Let X = {3,4,5}, θ: X × X → R+ and 
dθ: X × X → R+ as θ(x, y) = x + y   
dθ(3,3) = dθ(4,4) = dθ(5,5) = 0,  
dθ(3,4) = dθ(4,3) = 50, 
dθ(3,5) = dθ(5,3) = 250, 
dθ(4,5) = dθ(5,4) = 400. 
It is obvious from definition 2.1 in EbM 1. and EbM 
2. We then prove EbM 3. in the following way: 
50 = dθ(3,4) ≤ θ(3,4)[dθ(3,5) + dθ(5,4)] = 4,550 
250 = dθ(3,5) ≤ θ(3,5)[dθ(3,4) + dθ(4,5)] = 3,600 
450 = dθ(4,5) ≤ θ(4,5)[dθ(4,3) + dθ(3,5)] = 2,700 
Therefore, (X, dθ) is an extended b-metric space. 
Example 2.3. [14] Let X = [0, +∞) and  
θ: X × X → [1, +∞), θ(x, y) = 1 + x + y. 
Define dθ: X × X → [1, +∞), as 
dθ(x, y) = x + y, for x, y ∈ X, x ≠ y 
dθ(x, y) = 0, for x, y ∈ X, x = y. 
It is easy to show EbM1. and EbM 2. Hold. For EbM 3. 
We split the consideration into four cases: 
Case 1. If x = y, we have EbM 3. hold. 
Case 2. If x ≠ y, x = z, then 
θ(x, y) [dθ (x, z) + dθ(z, y)]  
  = (1 + x +  y)[0 + (z + y)] 
  = (1 + x + y)(z + y) 
  ≥ x + y = dθ (x, y). 
Case 3. If x ≠ y, y = z, then 
 θ(x, y)[ dθ (x, z) + dθ (z, y)]  
  = (1 + x + y)[(x + z) + 0] 
  = (1 + x + y)(x + y) 
  ≥ x + y = dθ (x, y) 
Case 4. If x ≠ y, y ≠ z, x ≠ z, then 
θ(x, y)[ dθ(x, z) + dθ (z, y)]  
 = (1 + x + y)[(x + z) + (z + y)] 
 ≥ x + 2z + y 
 ≥ x + y = dθ (x, y). 
In conclusion, for any x, y, z ∈ X, 
 dθ (x, z) ≤ θ(x, z)[ dθ (x, y) + dθ (y, z)]. 
 
 

Hence, (X, dθ) is an extended b metric space. 
In the next section, the concepts of convergence, 

Cauchy sequence, and completeness are introduced in 
extended b-metric space. 
Definition 2.4. [14] Let (X, dθ) be an extended b-metric 
space. Then a sequence (xn) in X is said to be:  
1) convergent if and only if there exists 
 x ∈ X such that lim

n→∞
xn = x,  

2) Cauchy if and only if lim
m,n→∞

dθ(xm, xn) = 0.  

Definition 2.5. An extended b metric space. (X, dθ) is 
complete if every Cauchy sequence in X is convergent. 
Lemma 2.6. Let (X, dθ)  be a complete extended  
b-metric space. If dθ is continuous, then every 
convergent sequence has a unique limit. 
Definition 2.7.  [1] A mapping F: [0,∞)2 → R is called 
a C-class function if it is continuous and for all a, b ∈
[0,∞) 
1) F(a, b) ≤ a ;  
2) F(a, b) = a implies that either a = 0 or b = 0.  
We denote C as the family set of all C-class functions. 
Example 2.8. [1] The following functions  
F ∶  [0,∞)2 → R2 are elements in C. For all a, b ∈ [0,∞) 
1) f(a, b) = a − b, f(a, b) = a → b = 0;  
2) f(a, b) = xa , f(a, b) = a → a = 0 where 0 < x < 1;  

3) f(a, b) = (a +  x) �
1

1+by �– x, f(a, b) = a → b = 0 
where x > 1 , y ∈ (0,∞);  
4) f(a, b) = log b + x a

1 + b
, x > 1,  

     (a, b)  = a ⇒ a = 0 or b = 0;  
5) f(a, b) = ln(1 + xa)/2, x > e,  
     f(a, b) = a ⇒ a = 0;  
6) f(a, b) = a (1 + b) x; x ∈ (0,∞),  
     f(a, b) = a ⇒ a = 0 or b = 0;  
7) f(a, b) = a logb+x x, x > 1, 
     f(a, b) = a ⇒ a = 0 or b = 0;  
8) f(a, b) = a − �1+a

2+a
� � b

1+b
�, 

     f(a, b) = a ⇒ b = 0 ;  
9) f(a, b) = a;β(a), β: [0,∞) → [0, 1) is continuous 
     f(a, b) = a ⇒ a = 0;  
10) f(a, b) = a − b

k+b
 , f(a, b) = a ⇒ b = 0;  

11) f(a, b) = a –φ(a), f(a, b) = a ⇒ a = 0, 
φ ∶ [0,∞) → [0,∞) is a continuous function such that 
φ(t) = 0 → t = 0;  
12) f(a, b) = ah(a, b), f(a, b) = a ⇒ a = 0 
 h ∶  [0,∞) × [0,∞) → [0,∞)  is a continuous function 
such that h(b, a) < 1 for all b, a > 0; 
13) f(a, b) = a − �2−b

1+b
� b , f(a, b) = a ⇒ a = 0; 

14) f(a, b) = �ln(1 + an)n , f(a, b) = a ⇒ a = 0; 
15) f(a, b) = φ(a), f(a, b) = a ⇒ a = 0 
φ ∶  [0,∞) → [0,∞)  is a continuous function such that 
φ(0) = 0 and φ(b) < b for b > 0;  
16) f(a, b) = a

(1+a)x
, x ∈ (0,∞), 

 f(a, b) = a ⇒ a = 0. 
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Definition 2.9. [1] ψ ∶ [0,∞) →  [0,∞) is called an 
altering distance function if the following properties 
are satisfied: 
1) ψ is non-decreasing and continuous;  
2) ψ(t) = 0 if and only if t = 0. 
The family of all altering distance functions is denoted 
by ψ. 
Example 2.10. The following functions 
ψi ∶  R+ → R+, i ∈ {1, 2, 3, . . . , 6} are elements in ψ  
1) ψ1(x) =  kx where k >  0,  
2) ψ2(x) =  xα where α >  0,  
3) ψ3(x) = sinh−1 x,   
4) ψ4(x) = cosh x − 1,   
5) ψ5(x) = ax − 1  where 0 <  a ≠  1.  
Definition 2.11. [1] A function φ ∶ [0,∞) →  [0,∞) 
is called an ultra-altering distance function if the 
following properties are satisfied in the following  
1) φ is continuous;  
2) φ(t) > 0 if and only if t > 0.   
We denoted Ψu as the family of all ultra-altering 
distance functions.  

RESULTS AND DISCUSSION 

In this section, we are now ready to prove our 
main results. 
Theorem 3.1. Let a function dθ: X ×  X →  [0,∞) is 
an extended b metric space, and f ∶  X →  X is a self-
mapping. Suppose 
ψ�θ(x, y)dθ�fx, fy�� 
≤  F(ψ(M(x, y)),ϕ(M(x, y)))  +  LN(x, y)       (3.1) 
for all x, y ∈  X , where L ≥  0, F ∶  [0,∞)2  →  R  
is an element in C, ψ ∶  [0,∞)  →  [0,∞) is an element 
in Ψ , φ ∶  [0,∞)  →  [0,∞) is an element in Ψu and 

 M(x, y) = max �dθ(x, y), dθ(x,fx)dθ(y,fy)
1+dθ(fx,fy)

� and 

 N(x, y) = min�dθ(x, fx), dθ�x, fy�, dθ(y, fx), dθ�y, fy�� . 
Then f has a unique fixed point. 
Proof. Let x0  ∈  X. Define a sequence (xn)  ⊂  X by  
xn  =  fn(x0)  =  fxn−1 for n ∈  N ∪  {0}. We now prove 
that (xn ) is a Cauchy sequence. First, we show 
lim
n→∞

dθ (xn, xn+1) = 0.  

From 3.1 we have,  
dθ(xn, xn+1)  ≤  θ(xn, xn+1)dθ(xn, xn+1)  
     =  θ(xn, xn+1)dθ(f(xn−1), f(xn) ). 
Consequently ψdθ(xn, xn+1) 
≤  ψ(θ(xn, xn+1)dθ(f(xn−1), f(xn))  
≤  F(ψ(M(xn−1, xn )),φ(M(xn−1, xn))) 
+ LN(xn−1, xn)                         (3.2) 
where M(xn−1, xn) 

=  max �dθ(xn−1, xn),
dθ(xn−1, fxn−1)dθ(xn, fxn)

1 + dθ(fxn−1, fxn) � 

=  max �dθ(xn−1, xn),
dθ(xn−1, xn)dθ(xn, xn−1)

1 + dθ(xn, xn+1) � 

=  dθ(xn−1, xn) 
and N(xn−1, xn)  
= min{dθ(xn−1, fxn−1), dθ(xn−1, fxn), dθ(xn, fxn−1),  

 dθ(xn, fxn)} 
= min{dθ(xn−1, xn), dθ(xn−1, xn+1), dθ(xn, xn),  
 dθ(xn, xn+1)} 
= min{dθ(xn−1, xn), dθ(xn−1, xn+1), 0, dθ(xn, xn+1)}  
=  0. 
Therefore, it follows from 3.2 that we have 
ψ(θ(xn, xn+1)dθ(f(xn−1), f(xn))  
 ≤ F(ψ(dθ(xn−1, xn)),φ(dθ(xn−1, xn)) + LN(xn−1, xn)    

= F(ψ(dθ(xn−1, xn)),φ(dθ(xn−1, xn)) + L(0)  

= F(ψ(dθ(xn−1, xn)),φ(dθ(xn−1, xn)) 
thus  
ψ(dθ(xn, xn+1) ≤ F(ψ�dθ(xn−1, xn)�, 
φ�dθ(xn−1, xn)�.  (3.3) 
Since F is a function in C, we have 
ψ(dθ(xn, xn+1) 
≤  F(ψ(dθ(xn−1, xn)),φ(dθ(xn−1, xn)) 
≤  ψ�dθ(xn−1, xn)�                  (3.4) 
= ψ�dθ(xn, xn−1)� 
And ψ is non-decreasing, thus 
 dθ(xn, xn+1)  ≥  0 ∀n ∈  N. 
And {dθ(xn, xn+1)} is a descending sequence. 
Then it converges, and there exists r ≥  0  
such that lim

n→∞
dθ(xn, xn+1)  =  r. 

Let n →  ∞, then from 3.4 it implies that 
 ψ(r) =  ψ lim

n→∞
dθ(xn, xn+1)  ≤  ψ(xn, xn−1) 

= lim
n→∞

ψ(dθ(xn, xn+1))  ≤  ψ lim
n→∞

dθ(xn−1, xn)  
≤  lim

n→∞
F(ψ(dθ(xn−1, xn)) ,φ(dθ(xn−1, xn))  ≤  ψ(r) 

=  F lim
n→∞

(ψ(dθ(xn−1, xn)) ,φ(dθ(xn−1, xn))  ≤  ψ(r) 

= F (ψ(lim
n→∞

((dθ(xn−1, xn))) , (φ(lim
n→∞

((dθ(xn−1, xn))) 
≤  ψ(r) 

 = F(ψ(r),φ(r)) ≤  ψ(r) 
therefore r =  0 and lim

n→∞
dθ(xn−1, xn) = 0.   (3.5) 

Next, it is proved that the sequence (xn) is a Cauchy 
sequence. Suppose that (xn) is not a Cauchy sequence. 
By definition 2.4, we have ε > 0,  for which we can 
find two sequences of positive integers (m(k))  and 
(n(k)) such that for all positive integers k, n(k) >
m(k) > k  and d�xm(k), xn(k)�  ≥  ε. Let n(k)  be the 
smallest such positive integer n(k) > m(k) > k  
such that ∀k ∈ I+ 
 dθ�xm(k), xn(k)�  ≥  ε, 
 d�xm(k), xn(k)−1� >  ε                      (3.6) 
by 3.6 and θ ∶  X ×  X →  [1,∞) 
we have 
lim
n→∞

inf (ε)  ≤ lim
n→∞

inf (dθ�xm(k), xn(k)−1�)  

ε ≤  lim
n→∞

inf (dθ�xm(k), xn(k)−1�)              (3.7)   

θ (xm(k), xn(k)−1 )  ≥  1.                  (3.8)    
Since 3.7 and 3.8, we have 
 0 < ε

θ�xm(k),xn(k)−1�
 ≤  ε  

≤ lim
n→∞

inf (dθ�xm(k), xn(k)−1�)  

where M�xm(k), xn(k)−1�   
=  max {dθ�xm(k), xn(k)−1�, 
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dθ�xn(k)−1, fxn(k)−1�dθ�xm(k), fxm(k)�
1 + dθ�fxn(k)−1, fxm(k)�

} 

=  max{dθ�xm(k), xn(k)−1�, 
dθ�xn(k)−1,xn(k)�dθ�xm(k),xm(k)+1�

1+dθ�xn(k),xm(k)+1�
}. 

Let k →  ∞ and apply 3.4, 3.5, and 3.6. We get  
ε

θ2xm(k),xn(k)−1 
 ≤ lim

k→∞
in f �M�xm(k), xn(k)−1�� . (3.9) 

Also lim
k→∞

N�xm(k), xn(k)−1� 
=  lim

k→∞
min {dθ�xn(k)−1, fxn(k)−1� , dθ�xm(k), fxm(k)−1�, 

dθ�xn(k), fxm(k)�}   
=  min {lim

k→∞
dθ�xn(k)−1, xn(k)� , lim

k→∞
dθ�xm(k), xm(k)+1�, 

 lim
k→∞

dθ�xn(k), xm(k)+1�, lim
k→∞

dθ�xm(k), xm(k)�}  
=  min {lim

k→∞
dθ�xn(k)−1, xn(k)� , lim

k→∞
dθ�xm(k), xm(k)+1�, 

 lim
k→∞

dθ�xm(k), xm(k)�}  
= 0. 
Then 
 dθ�xm(k), xn(k)� − θ(xm(k), xn(k))dθ�xm(k), xm(k)+1�  
≤ θ�xm(k), xn(k)�dθ�xm(k)+1, xn(k)�.         (3.10) 
from 3.7 and 3.9 we get  
ψ(ε)  ≤  ψ(lim

k→∞
sup dθ(xm(k), xn(k)))  

≤  ψ(lim
k→∞

sup dθ(xm(k), xn(k)))dθ(xm(k)+1, xn(k))  

≤  F(ψ�lim
k→∞

sup M�xm(k), xn(k)−1��, 

     φ(�lim
k→∞

inf M�xm(k), xn(k)−1��) 

≤  ψ(ε)  
and F �ψ(ε),φ�lim

k→∞
inf M(xm(k), xn(k)−1�� =  ψ(ε). by 

definition 2.7 2) we get ψ(ε) = 0 or 
 φ�lim

k→∞
inf M(xm(k), xn(k)−1�  =  0  

and by definition 2.9 2) we get ε = 0 or  
lim
k→∞

inf M(xm(k), xn(k)−1 = 0. 

it is a contradiction with ε > 0 and 
 lim
k→∞

inf (M�xm(k), xn(k)−1�)  ≥ ε

 dθ�xm(k),xn(k)�
2

 
  

thus (xn) is an extended b-Cauchy sequence in X. Since 
(X, d) is a completely extended b metric space, there 
exists u ∈  X such that lim

n→∞
xn =  u now, we show u is a 

fixed point of f since 
 1 ≤  θ(u, fu)  and dθ(u, fu)  ≥  0 
we get dθ(u, fu) ≤  θ(u, fu)dθ(u, fu). 
And since ψ  is a nondecreasing function implies 
ψ(dθ(u, fu))  ≤  ψ(θ(u, fu)dθ(u, fu))        (3.11) 
ψ(θ(u, fu)dθ(f �lim

n→∞
xn , f (lim

n→∞
xn�) 

=  ψ(θ(u, fu)(dθfu, f(fu)))  
=  ψ(θ(u, fu)dθ(u, fu))ψ(θ(u, fu)θ(u, fu)(u, fu)) 
≤  F(ψ(M(u, fu)),φ(M(u, fu))) +  LN(u, fu)   (3.12) 
but M(u, fu)  =  dθ(u, fu) and N(u, fu)  =  0 thus 
ψ(d(u, f(u)))  ≤  F ψ(θ(u, f(u))),φd(u, f(u)  

≤  ψ(d(u, f(u)))  
So ψ(d(u, f(u)))  =  F ψ(θ(u, f(u))),φd(u, f(u)). 
 ∴  ψ(θ(u, f(u)))  =  0 or φd(u, f(u))  =  0. 
By definition 2.1 we have d(u, f(u)) = 0 so u = f(u)  

Now, we will show that u is a unique fixed point of 
f. Suppose v ≠  u is another fixed point of f from 3.1.  
We have  
ψ(d(u, f(u)))  ≤  ψ(θ(u, v), d(u, v))  
=  ψ(θ(u, v), d(f(u), f(v))  
≤  F(ψ(M(u, v)),φM(u, v))  +  LN(u, v)  
≤  F(ψ(M(u, v)),φM(u, v))  
≤  F(ψ(d(u, v)),φd(u, v))  
≤  ψ(d(u, v))  
so ψd(u, v)  =  F(ψ(d(u, v),φ d(u, v))  
thus ψ(d(u, v)  =  0 or φd(u, v)  =  0. 
By definition 2.9, we have d(u, v) = 0 so that u =  v It 
means that f has a unique fixed point. 
Example 3.2. Let dθ: X ×  X → R+ and (X, dθ) is an 
extended b metric space. f ∶  X →  X be such that f(x)  =
 x
2

 , θ ∶ X × X →  R+ satisfy  

θ(x, y)  =  � |x − y|3 ; x ≠ y
  1       ; x = y     

And define F ∶ [0,∞)2 → R2 by F(x, y)  =  x − y  and 
define  ψ ∶ [0,∞) → [0,∞) ,φ ∶ [0,∞) → [0,∞)  by 
ψ(x)  =  2x and φ(x)  =  x respectively. 
M(x, y) =  max { dθ(x, y), dθ(x,fx)dθ(y,fy)

1+dθ(fx,fy)
 } and  

N(x, y)  =  min{dθ(x, fx), dθ(x, fy), dθ(y, fx), dθ(y, fy)}.  
From, example 2.8, definition 2.9, and definition 2.11 
invoke that F is in C,ψ is in Ψ, and φ is in Ψu. Next, it 
will be considered that 
ψ�θ(x, y)dθ(fx, fy)�  
≤  F(ψ(M(x, y)),φ(M(x, y))) + LN(x, y). 
It will be considered in 3 cases: x =  y , x >  y and x <
y as follows. 
Case 1: if x =  y 
Since x =  y therefore that θ(x, y)  =  1 and 
dθ(x, y)  =  dθ(fx, fy)  =  0 and  
dθ(x, fx) =  dθ(y, fy) =  dθ(x, fy) =  dθ(y, fx)  
= (x − x

2
)4 =   x

4

16
 . 

So that dθ(x,fx)dθ(y,fy)
1+dθ(fx,fy)

=
�x
4
16�

2

1+0
= x8

256
 .  

And consider that 
M(x, y)  =  max �dθ(x, y), dθ(x,fx)dθ(y,fy)

1+dθ(fx,fy)
�  

=  max �0, x8

256
� =  x

8

256
     and 

N(x, y)  =  min{dθ(x, fx), dθ(x, fx), dθ(y, fx), dθ(y, fy)}  
=   x

4 
16 

 . 
Next, it will be considered that 
ψ(θ(x, y)dθ(fx, fy)) by θ(x, y)  =  1 and 
dθ(x, y)  =  dθ(fx, fy)  =  0. We have  
ψ(θ(x, y)dθ(fx, fy))  =  ψ(1(0))  =  ψ(0)  =  0. 
And F(ψ(M(x, y)),φ(M(x, y)))  +  LN(x, y)  

ψ(M(x, y))  =  ψ( 
x8

256
)  =  2( 

x8

256
)  =  

x8

128
  

φ(M(x, y))  = φ( x
8

256
 )  =  x

8

256
 then we have 

F �ψ�M(x, y)�,φ�M(x, y)�� =  F � x
8

128
 , x8

256
 � =  x

8

256
 . 

Hence F(ψ(M(x, y)),φ(M(x, y))) + N(x, y)  
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= x8

256
+ x4

16
   such that 0 ≤  x

8

256
+ x4

16
 so if x =  y then 

we have 
 ψ�θ(x, y)dθ(fx, fy)� 
≤  F(ψ(M(x, y)),φ(M(x, y)))  +  N(x, y). 
 Case 2: x >  y  
Since x >  y then we have 
 θ(x, y) = |x − y|3  =  (x −  y)3   
and dθ(x, y) =  (x −  y)4  

dθ(x, fx)  =  �x −
x
2
�
4

 =  
x4

16
 

dθ(y, fy)  =  �y −
y
2
�
4

 =  
y4

16
 

dθ(x, fy)  =  �x −
y
2
�
4

 =  
(2x − y)4

16
 

dθ(y, fx)  =  �y −
x
2
�
4

 =  
(2y − x)4

16
 

dθ(fx, fy) =  �x
2
− y

2
�
4

 =  (x−y)4

16
 . 

Therefore dθ(x,fx)dθ(y,fy)
1+dθ(fx,fy)

=  
�x
4
16��

y4
16�

1+�(x−y)4
16 �

 = �
x4y4
16

16+(x−y)4
�. 

Next, it will be considered that  

M(x, y)  =  max �dθ(x, y),
dθ(x, fx) dθ(y, fy) 

1 + dθ(fx, fy) 
 �  

 =  max �(x −  y)4 ,�
x4y4
16

16+(x−y)4
� � = (x −  y)4 and  

N(x, y)  =  min{dθ(x, fx), dθ(x, fy), dθ(y, fx), dθ(y, fy)}  
= min �x

4

16
, (2x−y)4

16
, (2y−x)4

16
, y

4

16
� = (2y−x)4

16
 . 

And ψ(θ(x, y)dθ(fx, fy)) by θ(x, y)  = |x −  y| 3  

and dθ(fx, fy)  =  (x−y)4

16
 

ψ(θ(x, y)dθ(fx, fy))  =  ψ(|x −  y| 3  
(x − y)4

16
)  

=  ψ�(x−y)7

16
�                        

=  (x−y)7

8
 . 

And next regard 
 F(ψ(M(x, y)),φ(M(x, y)))  +  N(x, y) 

ψ(M(x, y))  =  ψ((x −  y)4 )  =  2((x −  y)4)  

φ(M(x, y))  =  φ((x −  y)4 )  =  (x −  y)4 . 

We have  
F �ψ�M(x, y)�,φ�M(x, y)�� 

=  F(2(x −  y)4 , (x −  y)4 ) 

=  2(x − y)4 − (x −  y)4  =  (x −  y)4  

So F(ψ(M(x, y)),φ(M(x, y)))  +  N(x, y) 

= (x −  y)4 +
(2y − x)4

16
 

such that (x−y)7

8
 ≤  (x −  y)4 + (2y−x)4

16
. Consequently, 

if x >  y we have 

 ψ�θ(x, y)dθ(fx, fy)� 
≤  F(ψ(M(x, y)),φ(M(x, y)))  +  N(x, y). 
Case 3: if x <  y  

Since x <  y, we have 
 θ(x, y) = |x − y|3  =  −(x −  y)3  and 
 dθ(x, y) =  (x −  y)4  

dθ(x, fx)  =  �x −
x
2
�
4

 =  
x4

16
 

dθ(y, fy)  =  �y −
y
2
�
4

 =  
y4

16
 

dθ(x, fy)  =  �x −
y
2
�
4

 =  
(2x − y)4

16
 

dθ(y, fx)  =  �y −
x
2
�
4

 =  
(2y − x)4

16
 

dθ(fx, fy) =  �x
2
− y

2
�
4

 =  (x−y)4

16
 . 

Then dθ
(x,fx)dθ(y,fy)
1+dθ(fx,fy)

=  
�x
4
16��

y4
16�

1+�(x−y)4
16 �

 = �
x4y4
16

16+(x−y)4
�. Consider 

that  

M(x, y)  =  max �dθ(x, y),
dθ(x, fx) dθ(y, fy) 

1 + dθ(fx, fy) 
 �  

N(x, y)  =  min{dθ(x, fx), dθ(x, fy), dθ(y, fx), dθ(y, fy)}   

max �(x −  y)4 ,�
x4y4
16

16+(x−y)4
� � = (x −  y)4  and  

N(x, y)  =  min{dθ(x, fx), dθ(x, fy), dθ(y, fx), dθ(y, fy)}  

= min �
x4

16
,
(2x − y)4

16
,
(2y − x)4

16
,
y4

16
� =

(2y − x)4

16
 

ψ(θ(x, y)dθ(fx, fy)) by θ(x, y)  = −(x − y)3  
and dθ(fx, fy)  =  (x−y)4

16
 

ψ(θ(x, y)dθ(fx, fy))  =  ψ(|x −  y| 3  
(x − y)4

16
)  

                       =  ψ�−(x−y)7

16
�  

                       =  −(x−y)7

8
 . 

Next, it will be considered that 
F(ψ(M(x, y)),φ(M(x, y)))  +  N(x, y) 
ψ(M(x, y))  =  ψ((x −  y)4 )  =  2((x −  y)4)  
φ�M(x, y)� =  φ((x −  y)4 ) =  (x −  y)4. 
Therefore F(ψ(M(x, y)),φ(M(x, y)))   
=  F(2(x −  y)4 , (x −  y)4 ) 
=  2(x − y)4 − (x −  y)4  =  (x −  y)4. 
So F(ψ(M(x, y)),φ(M(x, y)))  + N(x, y) 

= (x −  y)4 +
(2x − y)4

16
 

such that −(x−y)7

8
 ≤  (x −  y)4 + (2x−y)4

16
. 

Consequently, if x <  y we have 
ψ�θ(x, y)dθ(fx, fy)� ≤  F(ψ(M(x, y)),φ(M(x, y))) +
N(x, y). 
By the fact that f(x)  =  �x

2
�, function f has a unique 

fixed point that is 0. 
Corollary 3.3, let (X, d) be a complete extended b-
metric space on X and f ∶  X →  X be self-mapping. If 
ψ�θ(x, y)dθ(fx, fy)� ≤  F(ψ(M(x, y)),φ(M(x, y))) +
N(x, y). for all x, y ∈  X , where ψ ∶  [0,∞)  →  [0,∞) is 
an ultra altering distance function and 
M(x, y)  =  max �dθ(x, y), dθ(x,fx) dθ(y,fy) 

1+dθ(fx,fy) 
 � and  

N(x, y)  =  min{dθ(x, fx), dθ(x, fy), dθ(y, fx), dθ(y, fy)}  
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then f has a unique fixed point. 
Proof. Let F(a, b)  =  a –  b. By example 2.8, we have F 
as a C-class function. 
so ψ�θ(x, y)dθ(fx, fy)�  
≤  ψ(M(x, y))  −  φ(M(x, y))  +  LN(x, y) 
=  F(ψ(M(x, y)),ϕ(M(x, y)))  +  LN(x, y). 
Thus all the conditions of theorem 3.1 are satisfied. 
Hence f has a unique fixed point. 
Corollary 3.4, let (X, d)  be a complete extended  
b-metric space on X and f ∶  X →  X be self-mapping. 
θ ∶  X × X →  [1,∞). Suppose ψ�θ(x, y)dθ(fx, fy)� 
≤  ψ�M(x, y)�βψ(M(x, y) + LN(x, y)). 
for all x, y ∈  X , where β ∶ [0,∞) → [0, 1) is 
continuous and 
M(x, y)  =  max �dθ(x, y), dθ(x,fx) dθ(y,fy) 

1+dθ(fx,fy) 
 � and  

N(x, y)  =  min{dθ(x, fx), dθ(x, fy), dθ(y, fx), dθ(y, fy)}  
then f has a unique fixed point. 
Proof. Let F(a, b)  =  θ(x, y)β(a)  
where β ∶  [0,∞)  →  [0, 1) is continuous. 
And let ψ(b)  =  b by corollary 3.3 we have 
ψ(θ(x, y)dθ(fx, fy)  
≤  ψ(M(x, y))β(ψ(M(x, y)))  +  LN(x, y) 
=  F(ψ(M(x, y)), β(ψ(M(x, y))))  +  LN(x, y) 
Thus, all the conditions of theorem 3.1 are satisfied. 
Hence, f has a unique fixed point. 
Corollary 3.5, let (X, d)  be a complete extended  
b-metric space on X and f ∶  X →  X 
be self-mapping. θ ∶  X ×  X →  [1,∞). 
Suppose 

 d�f(x), f(y)� ≤ �β�M(x,y)�
S

�M(x, y) + LN(x, y) 
 for all x, y ∈  X , where L ≥  0, 
β ∶  [0,∞)  →  [0, 1) is continuous. And 
M(x, y)  =  max �dθ(x, y), dθ(x,fx) dθ(y,fy) 

1+dθ(fx,fy) 
 � and  

N(x, y)  =  min{dθ(x, fx), dθ(x, fy), dθ(y, fx), dθ(y, fy)}  
Then f has a unique fixed point. 
Proof. Let F(a, b)  =  ϕ(a) by theorem 3.1 where ϕ ∶
[0,∞) → [0,∞) is continuous and 
ϕ(0)  =  0,ϕ(b)  <  b where b >  0 and ψ(b) = b. 
Thus, all the conditions of corollary 3.3 are 
satisfied. Hence, f has a unique fixed point. 
Corollary 3.6, let (X, dθ)  be a complete b-metric 
space, and f ∶  X →  X be a self 
Mapping. Suppose 
 θ(x, y)dθ(fx, fy) ≤  θ�M(x, y)� + LN(x, y) 
 ∀x, y ∈  X  where L ≥  0, θ ∶ [0,∞)  →  [0,∞)  
is a continuous function such that 
θ(0)  =  0 and θ(t)  <  t for t >  0 and 
M(x, y)  =  max �dθ(x, y), dθ(x,fx) dθ(y,fy) 

1+dθ(fx,fy) 
 � and  

N(x, y)  =  min{dθ(x, fx), dθ(x, fy), dθ(y, fx), dθ(y, fy)} 
Then f has a unique fixed point. 
Proof. With choice θ(b) =  lb, 0 <  l <  1. 
Thus, all the conditions of corollary 3.5 are satisfied. 
Hence, f has a unique fixed point. 
Example 3.7. Let X =  C([a, b];  R) be a real value 
function defined on [a, b], f: X →  X 

where f(x)  =  2x+5
7

 and define (X, dθ) is an extended 
b metric space. 
By dθ(x, y)  =  supt∈[a,b]|x(t)  −  y(t)|2 and 
 θ ∶  X ×  X →  [1,∞) where 
 θ(x, y) = |x(t)| −  |y(t)|  +  2.  
So (X, dθ) is a complete b-metric space. Thus 
dθ(x, fx)  =  supt∈[a,b]|x(t) −  2x(t)+5

7
|2  

          =  supt∈[a,b]|  6x(t)+5
7

|2  

dθ(y, fy)  =  supt∈[a,b]|y(t) −  2y(t)+5
7

|2   

          =  supt∈[a,b]|  6y(t)+5
7

|2  

dθ(fx, fy)  =  supt∈[a,b]|
2x(t)+5

7
−  2y(t)+5

7
|2  

          =  supt∈[a,b]|  6x(t)−2y(t)
7

|2  

M(x, y)  =  max �dθ(x, y),
dθ(x, fx) dθ(y, fy) 

1 + dθ(fx, fy) 
 �  

=  max� supt∈[a,b]|x(t)

−  y(t)|2 ,
supt∈[a,b]|x(t) −  2x(t) + 5

7 |2 supt∈[a,b]|  6y(t) + 5
7 |2 

1 + supt∈[a,b]|  6x(t) − 2y(t)
7 |2 

 �  

=  supt∈[a,b]|x(t)  −  y(t)|2. 

Such that θ(x, y)dθ(fx, fy) 

=  (|x(t)| −  |y(t)| +  2)supt∈[a,b]|  
2x(t) − 2y(t)

7
|2  

=  4(|x(t)| − |y(t)| + 2)supt∈[a,b]|  
x(t) − y(t)

7
|2  

≤
4

49
 (|x(t)| −  |y(t)| +  2)supt∈[a,b]|x(t) − y(t) |2  

≤
4

49
dθ(x, y)M(x, y)  

Thus, all the conditions of corollary 3.6 are satisfied. 
Hence, 1 is a unique fixed point of f. 

CONCLUSIONS 

This article presents the concept of C-class 
functions of the fixed theorem in incomplete extended 
b-metric spaces. We also prove that a fixed point of 
C-class functions exists in incomplete extended  
b-metric spaces. Further, some examples supporting 
the main results are provided. Our results extend and 
generalize corresponding results in the literature. The 
work presented provides a basis for researchers to 
work on in the future, and the work presented here 
is likely to provide a ground for the researchers to work 
in different structures by using these conditions. 
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