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ABSTRACT

The purpose of this research project is to develop new theories, discuss, and extend some recent common fixed
point results established when the underlying ambient space is an extended b-metric space and the contraction
condition involves a new class of -¢-C-contraction type mappings where y is the altering distance function
and ¢ is the ultra-altering distance function. The unique fixed point theorems for such mappings in the setting
of y--complete metric spaces are proven. We also prove the fixed point theorem in partially ordered metric
spaces. Moreover, some examples supporting the main results are given. Our results extend and generalize
corresponding results in the literature. The start of the development of the theory of fixed points is tied to the
end of the 19™ century. The method of successive approximations is used in order to prove the solution's
existence and uniqueness at the beginning of differential and integral equations. This branch of nonlinear
analysis has been developed through various classes of spaces, such as metric spaces, topological spaces,
probabilistic metric spaces, fuzzy metric spaces, and others. In developing the theory of fixed points,
achievements are applied in various sciences, such as optimization, economics, and approximation theory. A
very important step in the development of fixed point theory was taken by A.H. Ansari through the introduction
of a C-class function. Using C-class functions, we generalize some known fixed point results, and Kamran et al.
introduced a new intuitive concept of distance measure to extend the notion of b-metric space by further
weakening the triangle inequality.

Keywords: Fixed point, Extended b-metric space, C-class function

INTRODUCTION generalize metric spaces such as partial, G-metric,

and cone metric spaces. For fixed point theorems in
It is widely known that Thailand has a strategy metric spaces sepe [2, 4, 6 101_)13 15, 16] and

to dgvelop the natioq using scigpce and technplogy, references therein. The concept of a b-metric space
pgrtlcularly n applqug sc1ept1f1c understanding to was introduced by Bakhtin [7], and Czerwik [9]
blgtechnology, materlgls science technology, and generalized the structure of metric space by weakening
suitable use of elchromF and computer techr}ology. the triangle inequality called a b-metric space and
Therefore, acquiring information is crucial for proved some results of the fixed point theorem in b-

gcademlc SUCCESS, anditis e"‘?‘em thfj‘t mathemat‘lcs metric spaces. Further, many authors use the concepts
is an essential instrument for discovering and growing for trade measures [5] and to measure ice floes [8]

those abovthsmg klnowclleldge of ?ath}?maftflcs tof In this context, Kamran and his co-authors [14]
create a mathematical mode to predict the eltect o introduced the concept of extended b-metric space

soil temperature on pllant grOthzl' for exgmple: Ir} by further weakening the triangle inequality. Later
2020, Boonwan ], et al. [3] created a mathematica in 2014, Ansari [1] introduced the concept of C-class

Hll]OdEI t(;lpredlct soil terrll_ll)erature ffor ctlhe grO\/\r/lth of functions and proved the unique fixed point theorems
chrysanthemum sprouts. However, fixed point theory ¢, specific contractive mappings concerning the C-
is another tool used to solve many nonlinear problems class functions

in mathematical analysis. In 1922, Stefan Banach [17] Following the above results, the motivation

began modern functional analysis and subsequently of this paper is to introduce the article's idea on some

studied how to exte.nd. this.principle fgr generalized fixed point theorems for C-class functions in b-metric
contraction transmission in many different ways.

Later, many researchers extended metric spaces to
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spaces [18] to cover more general cases. We then
prove the existence of unique fixed points in extended
b-metric space. Further, some examples supporting
the main results are given.

MATERIALS AND METHODS

This section has compiled definitions and
relevant theorems, a tool for further study and
research in the main results.

Definition 2.1. [14] Let X be a nonempty set and
0:XxX— [1,0). A function de:XxX— [1,0) is called an
extended b metric space, if for all x,y,z €X , it satisfies
EbM 1. de(x,y) = 0 if and only if x=y
EbM 2. ds(x,y )= de(y,x)
EbM 3. de(x,2)<0(x,2)[de(x,y)+ de(y,2)]
(X, dg) is called an extended b-metric space.

To show the concreteness of the idea of
extended b-metric space, we give some examples of
extended b-metric space in the following:

Example 2.2. et X = {3,4,5},0: X X X - R" and
dg: XXX —>Rtaso(x,y) =x+y
de(3,3) = dp(44) = de(5,5) =0,
d9(3,4) = d9(4,3) = 50,
d9(3,5) = d9(5,3) = 250,
d9(4,5) = d9(5,4) = 400.
It is obvious from definition 2.1 in EbM 1. and EbM
2. We then prove EbM 3. in the following way:
50 = dg(3,4) < 0(3,4)[dg(3,5) + dg(5,4)] = 4,550
250 = dg(3,5) < 0(3,5)[dg(3,4) + dg(4,5)] = 3,600
450 = dg(4,5) < 0(4,5)[dg(4,3) + dg(3,5)] = 2,700
Therefore, (X, dg) is an extended b-metric space.
Example 2.3.[14] Let X = [0, +) and
0: XXX - [1,+%),0(x,y) =1+x+y.
Define dg: X X X - [1, +0), as
de(x,y) =x+y forx,yeX,x#y
de(x,y) =0, forx,y €X,x =1y.
It is easy to show EbM1. and EbM 2. Hold. For EbM 3.
We split the consideration into four cases:
Case 1.1fx =y, we have EbM 3. hold.
Case 2.1fx # y,x = z, then
8(x,y) [de (x,2) + do(zy)]
=(1+x+ [0+ (z+y)]
=1+x+y)(z+y)
>x+y=dy x,y).
Case 3.Ifx # y,y = 7, then
8(x,y)[de (x,2) +dg (z,y)]
=1+x+y)[(x+z)+0]
=1+x+y)E+Yy)
2x+y=dg(xy)
Case4.Ifx #y,y # z,x # z, then
B(x,y)[de(x,2) + do (zy)]
=1+x+y)[+z)+(Z+y)]
>x+2z+y
>x+y=dg xy).
In conclusion, for any x,y,z € X,
do (x,2) < 0(x,2)[dg (x,y) + do (v,2)].

\ AND TEGHNOLGY

Hence, (X, dg) is an extended b metric space.

In the next section, the concepts of convergence,
Cauchy sequence, and completeness are introduced in
extended b-metric space.
Definition 2.4.[14] Let (X, dg) be an extended b-metric
space. Then a sequence (x,) in X is said to be:
1) convergent if and only if there exists
x € X such that rlll_ILla Xy = X,

2)Cauchy if and only if lim dg(xy,x,) = 0.

Definition 2.5. An extended b metric space. (X, dg) is
complete if every Cauchy sequence in X is convergent.
Lemma 2.6. Let (X,dg) be a complete extended
b-metric space. If dy is continuous, then every
convergent sequence has a unique limit.

Definition 2.7. [1] A mapping F: [0,«)? — Ris called
a C-class function if it is continuous and for all a,b €
[0, )

1)F(a,b)<a;

2)F(a,b) = aimplies that eithera=0orb = 0.

We denote C as the family set of all C-class functions.
Example 2.8.[1] The following functions

F: [0,0)? —» R? are elements in C For all a,b € [0, )
1)f(a,b) =a—b,f(a,b) =a - b = 0;

2)f(a,b) =xa,f(a,b) =a—>a=0where0 <x<1;

3)f(a,b) =(@ + x) (HLby)—x,f(a,b) =a->b=0
where x > 1,y € (0,);
4)f(a,b) = logbl:—xs,x > 1,
(a,b) =a=a=00rb=0;
5)f(a,b) =In(1 + xa)/2,x > e,
f(a,b)=a=>a=0;
6)f(a,b) =a(1+b)x;x € (0,),
f(a,b)=a=>a=0o0rb =0;
7)f(a,b) = alogp x,x > 1,
f(a,b)=a=>a=0o0rb =0;
1+a b
8)fab) =a— (337) (555)
f(ab)=a=>b=0;
9)f(a,b) = a;B(a),B: [0,) — [0,1) is continuous
f(a,b) =a=a=0;
b
10) f(a,b) = a—m,f(a,b) =a=b=0;
11) f(a,b) =a-¢(a),f(a,b) =a=a=0,
@ : [0,0) - [0, ) is a continuous function such that
e(t)=0->t=0;
12)f(a,b) = ah(a,b),f(a,b)=a=a=0
h: [0,00) X [0,0) — [0,00) iS a continuous function
such that h(b,a) < 1 for all b,a > 0;
13)f(a,b) =a—(33)b,fab) =a=a=0;
14)f(a,b) = Y/In(1 + a"),f(a,b) =a=>a=0;
15)f(a,b) = ¢(a),f(a,b) =a=>a=0
@ : [0,0) - [0,00 is a continuous function such that
@(0) =0and @(b) <bforb > 0;
16)f(a,b) =ﬁ,xe (0, ),
f(a,b) =a=a=0.
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Definition 2.9. [1] §: [0,0) —» [0,0) is called an
altering distance function if the following properties
are satisfied:

1)y is non-decreasing and continuous;

2)y(t) = 0ifand only if t = 0.

The family of all altering distance functions is denoted
by y.

Example 2.10. The following functions

Y;: Rt > R*,i€{1,2,3,...,6}are elements in s

1)y, (x) = kx wherek > 0,

2) Y, (x) = x* where a > 0,

3) Y53(x) = sinh1x,

4)y,(x) = coshx—1,

5)Ps(x) =a*—1 where0 < a # 1.

Definition 2.11. [1] A function ¢ : [0,%) — [0,©)

is called an ultra-altering distance function if the
following properties are satisfied in the following

1) @ is continuous;

2)@(t) > 0 ifand only ift > 0.

We denoted Wu as the family of all ultra-altering
distance functions.

RESULTS AND DISCUSSION

In this section, we are now ready to prove our
main results.
Theorem 3.1. Let a function dg: X X X > [0,%) is
an extended b metric space,and f: X — Xisa self-
mapping. Suppose
¥ (0Cx y)do(fy £y))
< FUM(x,y), ¢(M(x,y))) + LN(x,y)
forallx,y € X,whereL > 0,F: [0,0)? -» R
is an element in C, § : [0,0) — [0,) is an element
in¥, : [0,0) > [0,)is an element in Yu and

dg (x,fx)dg (y.fy)
M(X, y) = max {de (X, y), W} aI’ld

N(x,y) = min{dg(x,f,), do(xf,), de (v, f), do (. £y )} -
Then f has a unique fixed point.

Proof. Let x, € X. Define a sequence (x,) c X by
X, = f*(%,) = fx,_, forn € Nu {0}. We now prove
that (x,) is a Cauchy sequence. First, we show
Illl_llrolo do (Xn, Xn+1) = 0.

(3.1)

From 3.1 we have,

de (Xn' Xn+1) < e(Xn' Xn+1)d9 (Xn: Xn+1)
= 0(Xp, Xn+1)de (f(Xn-1), f(X4) )-

Consequently ydg (X, Xn+1)

< IIJ(G (Xn: Xn+1)d9 (f(Xn—l)' f(Xn))

< F(ll-’(M (Xn—1: Xn ))' (P(M (Xn—1: Xn)))

+ LN(Xn—l' Xn)

where M(x,_1,Xp)

do (X1, Fn—1)do (Xp X,
— maxldg(xo_ux), o (Xn—1, fXn_1)dg (Xy, fx )}

1+ dg(fxy_q, fXp)
de (Xn—l'xn)de (Xnﬁxn—l)}
1+ de (Xnﬁxn+1)

= max {de (Xn-1,Xn),

= de(Xn—an)
and N(xp_1,Xp)
= min{dg(Xn_1, fXn_1), do (X1, fXy), do (Xp, fXn_1),

de(Xn, an)}

= min{de (Xn—li Xn)' dS(Xn—ll Xn+1)' de (Xn: Xn):

do(Xn, Xn41)}

= rgin{de (Xn-1,Xn), dg(Xn—1,Xn+1), 0, dg (Xp, Xn11)}
Therefore, it follows from 3.2 that we have
Y(O(xn, Xn+1)de (f(xn-1), f(Xn))

< F(‘P(de (Xn—lﬁ Xn))' (P(de (Xn—lﬁ Xn)) + LN(Xn—l' Xn)

= F(Y(de (xn-1,%n)), @(do (Xn-1,%Xn)) + L(0)

= F(W(do (Xn-1,%n)), @(dg (Xn-1,%n))
thus

lll(de (Xn: Xn+1) < F(lll(de(xn—p Xn))'

@(do(Xn-1,%Xn))- (3.3)
Since F is a function in C, we have

lll(de (Xn: Xn+1)

< F(Y(de(Xn-1,%n)), @(dg(Xn-1,Xn))

< llj(de(xn—lﬁxn)) (34)

= lIJ(de (Xn: Xn—l))

And y is non-decreasing, thus

do(Xp, Xns1) = 0Vn € N.

And {dg(xp, X541)} is @ descending sequence.
Then it converges, and there existsr > 0

such that lim dg (X, Xp41) = T.

Letn — oo, then from 34 it implies that

IIJ(I') = LIJ rlll_rga dG(Xn'Xn+1) < lIJ(Xn, Xn—l)

= lim lll(de (Xn: Xn+1)) < lIJ lim de (Xn—li Xn)

< Illi_r}(}oF(lb(dB (Xn—l'xn)) ’ (P(de (Xn—l'xn)) < lIJ(I‘)

= F}lggo(¢(de(xn—1'xn)) ,@(de(Xp-1,%n)) < Y(1)

= F ((lim ((do (xn-1,%n))) , (@(lim ((de (Xn-1,Xn)))
Sy

= FU(), @()) < W(r)

thereforer = 0and rllgg dg(Xp_1,%,) = 0. (3.5)

Next, it is proved that the sequence (x,) is a Cauchy

sequence. Suppose that (x,) is not a Cauchy sequence.

By definition 2.4, we have ¢ > 0, for which we can

find two sequences of positive integers (m(k)) and

(n(k)) such that for all positive integers k,n(k) >

m(k) >k and d(Xmaq Xngy) = & Let n(k) be the

smallest such positive integer n(k) > m(k) > k

such that vk e I*

do(¥Xmag Xno) = &

d(Xma Xnao-1) > €

by3.6and6: X x X - [1,0)

we have

lim inf (¢) < lim inf (dg (Xm(o Xn@)-1))

n—-oo
¢ < liminf (do (Xm(e) Xn(0-1))
0 Em@) Xno-1) = 1.
Since 3.7 ansd 3.8, we have

< 8(Xm (0 Xn(0-1) =€
< lim inf (dg (Xm( Xn(0-1))
where M(Xm(k)'xn(k)—l)

= max {dg (Xm(k)' Xn(k)—l)’
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do (Xn(-1, Kno-1)de (Xm@e) Kmao )
1 + do(fXngo-1, Xmaw)
= max{dg (Xm@» Xn(0-1)»
de(Xn(k)—an(k))de(Xm(k)er(k)ﬂ)}
1+dg (Xn(k) Xm(1)+1) ’

Letk — o and apply 3.4, 3.5, and 3.6. We get
e < limin f(M(Xmgio» Xngo-1) ) -
Also ]1(1—1;1;10 N(xm(k),xn(k)_l)

= lim min {do (%n(9-1, Xna9-1) » do (Xm» Fimaio-1),
do (Xna0» FXmao)}

= min {lim do (Xn(9-1,Xn(9) » [imdo (Xm(9» Xmao+1),
limde (n (9, Xm(o +1), Jimde (Xmag, Xmao)}

= min {lim dg (Xn(9-1,Xn(9) » [imdo (Xm(9» Xm@o+1),
limdg (Xm0, Xmao )}

= 0.

Then

de(Xm(k): Xn(k)) - e(Xm(k): Xn(k))de(xm(k): Xm(k)+1)
< 0(Xm@ Xn )6 (Xm0 +1- Xni) ) - (3.10)
from 3.7 and 3.9 we get

W(e) = W(lim sup do(Xm), Xn()))

Y(lim sup do (Xm0, Xn(0))do Km@o +1- Xn(o))

F(y (11(1_{1010 sup M(Xmqo» Xn(k)—l)):
‘P((ll(i_{ginfM(Xm(k)'Xn(k)—l)))

< Y(e)

and F (qJ(s), @ (llg?oinfM(xm(k),xn(k)_l)> = Y(e). by
definition 2.7 2) we get yi(¢) = 0 or

® (]l(i_r)roloinfM(xm(k),xn(k)_l) =0

and by definition 2.9 2)we get £ = 0 or
ll(im infM(Xm(k),Xn(k)_l =0.

}

(3.9)

IA

IN

it is a contradiction with € > 0 and
lim inf (M(x , X0 (k) — >—F
Koo ( ( m(k)’ 4n(k) 1)) de(xm(k)rxn(k))z

thus (x,) is an extended b-Cauchy sequence in X. Since

(X,d) is a completely extended b metric space, there

existsu € X such that lim x,, = u now, we show u is a
n—oo

fixed point of f since

1 < 0(u,fu) and dg(u,fu) = 0

we get dg(u, fu) < 06(uy, fu)dg (u, fu).

And since  is a nondecreasing function implies

Y(dg(u, fu)) < Y(B(y, fu)dg(u, fu)) (3.11)
W(O(u, fu)d(f (lim x, £ (lim x, ))

= P(B(u, fu)(defu, f(fu)))

= P(0(u, fu)dg(u, fu))Y(B(u, fu)B(u, fu)(u, fu))

< F(U(M(u, fu)), (M(u, fu))) + LN(u, fu) (3.12)

but M(u, fu) = dg(u, fu) and N(u, fu) = 0 thus
Y(d(u, f(w))) < Fy(6(u, f(u))), @d(u, f(u)

< P(d(u, f(w)))
So y(d(u, f(w)) = Fy(B(u, f(u))), ¢d(u, f(u)).
~ P(0(w, f(u))) = 0or gd(y,f(u)) = 0.
By definition 2.1 we have d(u, f(u)) = 0 sou = f(u)

\ AND TEGHNOLGY

Now, we will show that u is a unique fixed point of
f.Suppose v # u is another fixed point of f from 3.1.
We have

Y(d(u f(w)) < P(8(u,v),d(u,v))

P(O(u, v), d(f(w), f(v))

FQU(M(w,v)), @M(u,v)) + LN(u,v)

F(UM(u, v)), M(u, v))

FQy(d(u,v)), @d(u,v))

Y(d(u,v))

$0 Yd(u,v) = F(Y(d(w,v), ¢ d(u,v))

thus Y(d(u,v) = 0or @d(u,v) = 0.

By definition 2.9, we have d(u,v) = 0so that u = v It
means that f has a unique fixed point.

Example 3.2. let dg:X x X » Rtand (X,dg) is an
extended b metric space.f: X — Xbesuchthatf(x) =
2 ,0: X xX - RY satisfy

INININ A

_(Ix=yP;x=#y
0(x.y) _{ 1 ;x=y
And define F:[0,0)? -» R? by F(x,y) = x —y and
define  :[0,0) = [0,%0),¢ : [0,00) > [0,50) by
P(x) = 2xand @(x) = xrespectively.

dp (x,fx)dp (v.fy)
M(x,y) = max { do(x,y), =7 "} and

N(x,y) = min{de(x,x), de(x,fy), de(y, x), de(y, fy)}-
From, example 2.8, definition 2.9, and definition 2.11
invoke that Fis in C,y isin ¥, and ¢ is in Wu. Next, it
will be considered that
U(6(x,y)d (fx, fy))
< FU(M(x,y)), @(M(x,y))) + LN(x, y).
It will be considered in 3 cases: x = y,x > yandx <
y as follows.
Case 1:ifx = y
Since x = y therefore that 6(x,y) = 1 and
do(x,y) = dg(fx,fy) = 0and
do(x,fx) = do(y,fy) = do(x.fy) = do(y, fx)
—-Di= 5

2

x4
So that dexfdew.f) _ () _x

1+dg (fx fy) 140 256"
And consider that

M(xy) = max {dg(xy),

X8 X8
= max {0,—} = — and
256 256

N(xy) = min{de(x, x), dg (x, x), do (, £x), de (v, fy)}

X

de(X.fX)de(y,fY)}
1+dg(fxfy)

16
Next, it will be considered that

Y(6(x y)do(fx, fy)) by 8(x,y) = 1and
de(x,y) = dg(fx,fy) = 0. We have

P(0(x,y)de(fx, fy)) = P(1(0)) = Y(0) = 0.
And F(U(M(x,)), @(M(x,y))) + LN(x,y)

X8 XB XB
VM) = W(5ep) = 2(550) = 135
P(M(x,y)) = o2
F(lIJ(M(X,Y)).(P(M(x,y))) = F(% ';R) _ ZXR.

) = x then we have
256 256
Hence F(U(M(x,y)), e(M(x,¥))) + N(x, )
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=X—8+§ suchthat 0 < X—8+§soifx = y then
256 16 256 16

we have

P(0(x,y)do (fx, fy))

< FMx,y), oM(x,y))) + N(x,y).

Case2:x >y

Sincex > y then we have
bxy) =Ix—ylI> = (x — y)°
and dg(x,y) = (x — y*

do(x fx) = (X_§)4 _ >1<_46

Qi) = (-2 = 2

do (%, fy) = (x—%)4 - %

Qo) = (y-2) = B

wem = (3-3) =5
et - - ()

Next, it will be considered that
dg (%, fx) dg(y, f
M(x,y) = max{de(x,y), o (%, fx) dg(y, fy) }

1+ dg(fx, fy)
_ _ 4 16 _ _ 4
= max{(x y) ,(16+(1;_y)4>}— (x — y)*and
N(x,y) = min{dg(x, {x), do(x,fy), de(y, fx), de (v, fy)}
- min {ﬁ @ex-y)* @y-n* ﬁ} _ ey-x*
16’ 16 ' 16 ’16 16

xhyt

And Y(0(x,y)do(fx, fy)) by 6(x,y) =[x — y|°

and do(fx, fy) = 22

_ ; =)t
YOGV do(fx ) = Wllx — y1* =)
- (455)
- &7

And gext regard
Fb(M(x,¥)), o(M(x,¥))) + N(x,y)

YMxY) = U(x — »*) = 2(x - Y
PMxy) = o((x — »*) = x —n*.
We have

F(u(Mxy), o(M(xy)))

= FQx - »*, x —»N*)

=2x =y - -yt = x-y*

SO F(M(x,y)), e(M(x,¥))) + N(x,y)

2y —x*
— (v _ )4
&-n'"+—
—v)7 4
such that % < (x — y)* +%. Consequently,

ifx > y we have
P(8(x, y)de(fx, fy))

< FAO(M(x,y)), (M(x,¥))) + N(x,y).
Case3:ifx <y

Since x < y, we have
8(xy) =Ix-yl> = —(x — y)* and
de(x,y) = (x — y)*

do(x fx) = (X_g)4 _ ’1‘_46
Qi) = (-2 = 2
do(x.fy) = (x—§)4 = y
do(y, ) = (y—§)4 _ y
do(Boty) = (3-4)" = &2
x4\ (y*
Then del(’::;)g:(fs;)fy) _ 1?@) = (16%”4), Consider

that
dg (%, fx) dg(y, fy)
MGy) = max{de(x’”’ 81+d9(f[:< fy) }

N(xy) = min{dg(x, ), dg(x, £y), do (v, ), dg (v, fy)}

max{(x - y)4,<16:(§_y)4) } =(x — y)*and
N(x,y) = min{dg(x, fx), do(x,fy), do(y, fx), de (v, fy)}
o (xr2x=t Qy-0t oyt @y -0t
- {E’ 16 ' 16 ’R}_ 16
W(B(xy)de(fx fy)) by 8(xy) = —(x—y)*

and do(f fy) = 42"

V(O y)do(fx,fy)) = W(lx — y|?
= (5)

_ -y’

(x-y*
16

)

Next, it will be considered that
Fh(M(x,¥)), ¢(M(x,¥))) + N(x,y)
YMxY) = W(x —n*) = 2(x -9
o(Mx,y) = o(x = N*) = x = N*“
Therefore F(Y(M(x,y)), @(M(x,¥)))

= FQx - »*, x - »*)

=2x - -&x - =x -t

SO F(y(M(x, ), ¢(M(x,y))) + N(x,y)

3 . 2x=y*
=x -y +7T
such that% < (x -
Consequently, if x < ywe have

P(8(x,y)de(fx, fy)) < FAUM(x,y), @(M(x,y))) +
N(x, y).

By the fact that f(x) = (2) function f has a unique

fixed point that is 0.

Corollary 3.3, let (X,d) be a complete extended b-
metric spaceon X and f: X - X be self-mapping. If
P(8(xy)de(fx, fy)) < FOU(M(x,y)), @(M(x,¥))) +
N(x,y).forall x,y € X, where {s: [0,00) — [0,0) is
an ultra altering distance function and

_ do () do(,fy)
M(xy) = max {de xy), 1+dg (fxfy) } and

N y) = min{dg(x,x), dg(x, £y), do (v, ), dg (v, fy)}

4, x-p*
'+
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then f has a unique fixed point.

Proof. Let F(a,b) = a- b. By example 2.8, we have F
as a C-class function.

s0 Y(8(x,y)dg(fx, fy))

< y(M(xy)) — ¢(M(x,y)) + LN(xy)

= FU(M(x,y)), ¢(M(x,y))) + LN(x,y).

Thus all the conditions of theorem 3.1 are satisfied.
Hence f has a unique fixed point.

Corollary 3.4, let (X,d) be a complete extended
b-metric space on Xand f: X — X be self-mapping.
0: XxX - [1,0).Suppose y(0(x,y)dg(fx, fy))

< Y(MGxy))BU(M(x,y) + LN(x,¥)).

forall x,y € X, where f:[0,0) > [0,1) is
continuous and

_ do () do(,fy)
M(xy) = max {de xy), 1+dg (fxfy) } and

N(x,y) = min{de(x,x), do(x,fy), de(y, fx), de(y, fy)}
then f has a unique fixed point.

Proof. Let F(a,b) = 08(x,y)B(a)

where : [0,0) — [0,1) is continuous.

And let yi(b) = b by corollary 3.3 we have
Y(O(x,y)de(fx, fy)

< M y)BWM(x,y))) + LN(xy)

= Fy(M(x,y)), B(W(M(x,¥)))) + LN(x,y)

Thus, all the conditions of theorem 3.1 are satisfied.
Hence, f has a unique fixed point.

Corollary 3.5, let (X,d) be a complete extended
b-metric spaceonXandf: X - X

be self-mapping.6: X x X - [1,).

Suppose

a(F09, £y)) = [P M(x, ) + LN y)

forallx,y € X,whereL > 0,

B: [0,0) - [0,1) is continuous. And

dg(x.fx) dg(v.fy)
M(x,y) = max {de xy), m—f}‘:f;’)y } and

N(X' Y) = min{de(X: fX)' de (X' fY)' de (y1 fX)' de (y' fY)}
Then f has a unique fixed point.

Proof. Let F(a,b) = ¢(a) by theorem 3.1 where ¢ :
[0,0) — [0, ) is continuous and

®(0) = 0,p(b) < bwhereb > 0and y(b) =b.
Thus, all the conditions of corollary 3.3 are
satisfied. Hence, f has a unique fixed point.
Corollary 3.6, let (X,dg) be a complete b-metric
space,and f: X —» Xbe a self

Mapping. Suppose

0(x,y)dg(fx, fy) < G(M(X, y)) + LN(x,y)

vx,y € X whereL = 0,0:[0,0) - [0,)

is a continuous function such that

0(0) = 0and 6(t) < tfort > 0and

_ do () do(,fy)
M(xy) = max {de xy), 1+dg (fxfy) } and

N(x,y) = min{dg(x,fx), do(x,fy), de(y, fx), de(y, fy)}
Then f has a unique fixed point.

Proof. With choice 8(b) = 1b,0 < 1< 1.

Thus, all the conditions of corollary 3.5 are satisfied.
Hence, f has a unique fixed point.

Example 3.7. Let X = C([a,b]; R) be a real value

\ AND TEGHNOLGY

2x+5
7

where f(x) =
b metric space.

By do(x,y) = supeepap|x(t) — y(t)|* and
0: X x X - [1,0) where

8(xy) = [x(O] = ly(®O] + 2.
So (X,dg) is a complete b-metric space. Thus

2x(t)+5
de(%,fX) = supiepap|x(t) — - |?

and define (X, dg) is an extended

6x(t)+5 |2
7

= SUDPte[a,b] |

2y(t)+5 |2

de(y,fy) = Suptefaply(® — -

6y(t)+5
= SUPiefap)l — —I°

2x(t)+5 _ 2y(t)+5 |2

do(fx, fy) = supeefap)l —— 7

6x(t)-2y(t) |2

= SUPte[a,b] | 7

de (%, x) do (v, fy) }

MGy) = max{de(x’”’ 1+ do(f fy)

= maX{ SUPtefa,b) [X(1)

SUPtefab) X() —

2x(t) +5 6y(t)+5
5 %F SUPte[ab] | %F
- y®I*,

6x(t) — 2y(t
1 + supe(ap! M |2

= SUPiefap]IX(t) — y(®OI?.
Such that 8(x, y)dg (fx, fy)

2x(t) — 2
= (Ix(®O] = ly®Ol + 2)supeefapl Mlz

x(t) —y(t) E

. 7

< (Ix®] = ly®] + 2)supefapIx(®) —y(®) |?
4

=19 do(x, y)M(x,y)

Thus, all the conditions of corollary 3.6 are satisfied.
Hence, 1 is a unique fixed point of f.

= 4(Ix®] = ly(O] + 2)supiefa |

CONCLUSIONS

This article presents the concept of C-class
functions of the fixed theorem in incomplete extended
b-metric spaces. We also prove that a fixed point of
C-class functions exists in incomplete extended
b-metric spaces. Further, some examples supporting
the main results are provided. Our results extend and
generalize corresponding results in the literature. The
work presented provides a basis for researchers to
work on in the future, and the work presented here
is likely to provide a ground for the researchers to work
in different structures by using these conditions.
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