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Abstract

This paper presents the use of deep learning network-based Convolutional Neural Networks (CNNs) 
to enhance the effi ciency of classifying purebred Thai native chickens for conservation purposes. This 
study specifi cally focuses on Thai native chicken species known as Leung Hang Khao. Due to the 
signifi cant genetic diversity of the Thai native chickens, it typically requires experts to accurately 
identify the breeds. There are four groups of the Thai native chickens that were considered in this 
work; namely, purebred Leung Hang Khao male, purebred Leung Hang Khao female, crossbred male, 
and crossbred female. A total of 1,000 images have been collected, in which 250 images are from 
each group. Then, the data is divided into three sets which are training set, validation set, and testing set, 
in the ratios of 60:20:20, 70:20:10, and 80:10:10, respectively. Four architectures of the CNNs have 
been employed for verifi cation, i.e., LeNet-5, CNN1, CNN2, and CNN3, with epochs set at 10, 20, and 
50 epochs for each architecture. The results show that the CNN1 architecture with an 80:10:10 ratio 
and 10 epochs yielded the highest accuracy in learning, validation, testing, and prediction. Moreover, 
it required relatively less testing time with predicted accurate results of 100 %. The obtained 
results demonstrate that using the deep learning network-based convolutional neural network with 
a simple architecture setting can effectively classify Thai native chicken breeds.
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Introduction

Thai native chickens (Gallus gallus domesticus) are indigenous to South and Southeast Asia, including 
India, southern China, Myanmar, Vietnam, and Thailand (Liu et al., 2006). Descended from the red 
junglefowl (Gallus gallus), these chickens have been raised by Thai farmers for centuries (Fumihito 
et al., 1994; Sawai et al., 2010; Dorji et al., 2012; Mekchay et al., 2014). They are renowned for their 
disease resistance and adaptability to local climates, showing signifi cant genetic diversity. Despite this 
diversity, the Department of Livestock Development in Thailand has offi cially recognized only four 
native breeds: Pradu Hang Dam, Leung Hang Khao, Dang, and Chee (Mekchay et al., 2014). Surveys 
across various Thai provinces indicate that the Pradu Hang Dam and Leung Hang Khao breeds are the 
most commonly raised. These chickens are vital to rural communities, providing an affordable source 
of protein and supporting both primary and secondary livelihoods. In addition to being raised for 
consumption, they are also valued for ornamental purposes and participation in fi ghting competitions. 
Fighting chickens, particularly the Leung Hang Khao breed, were registered as a national cultural 
heritage in 2014, symbolizing the cultural and intellectual heritage of Phitsanulok province and 
Thailand. The Leung Hang Khao breed, developed specifi cally for combat, is known as King Naresuan’s 
fi ghting rooster (Laenoi et al., 2015).
 The Leung Hang Khao chicken, considered a valuable natural resource, exhibits a variety of 
feather colors in males, including bright dark yellow, medium yellow, light yellow (saffl ower or turmeric 
yellow), normal yellow, and ruby yellow. Their shank colors range from yellow to yellowish-black 
or yellowish-brown-black. This breed diversity refl ects the genetic variability inherent in Thai native 
chickens (Katano et al., 2011). Farmers raise native chickens for various purposes, such as consumption, 
sale, and sport, contributing to the diversity of their physical characteristics. The practice of raising 
different breeds together has led to both inbreeding and crossbreeding, resulting in a mix of purebred 
and crossbred chickens. The Department of Livestock Development, Thailand, classifi es these chickens 
based on physical characteristics such as feather color, beak, comb, shanks, and body shape. However, 
some chickens cannot be clearly classifi ed and are grouped by male feather color into categories 
such as Leung, Pradu, Khiao, Dang, Chee, Thao, Dang/Lai, and Sa (Laenoi et al., 2015; Khumpeerawat 
et al., 2021; Wiyabot and Kiattinarueyut, 2022; Yaemkong et al., 2024). 
 Among native chicken breeds, Pradu Hang Dam and Leung Hang Khao are the most popular, 
followed by other breeds like Thao Hang Khao, Lai Hang Khao, Nok Dang Hang Dang, Khiao Hang Dam, 
Thao Hang Dam, Thong Dang Hang Dam, Nokgod Hang Dam, Khiao Lao Hang Khao, and Pradu Lao 
Hang Khao (Pramual et al., 2013; Mekchay et al., 2014; Phasouk et al., 2021). The Leung Hang Khao 
breed, in particular, is noted for its feather color diversity (Figure 1 and 2). Surveys in Phitsanulok 
province revealed that no Leung Hang Khao chickens fully met the standard perfection characteristics 
(beautiful face, color, shapes, shanks, and demeanor) (Yeamkong et al., 2021; Siriwadee et al., 2023). 
Efforts are being made to preserve purebred native chickens, with annual competitions organized 
to showcase these breeds. However, selecting purebred native chickens is challenging and requires 
signifi cant expertise. In a case study in (Mekchay et al., 2014; Hata et al., 2021), discrepancies were 
observed in scoring native chickens based on standard perfection characteristics, particularly in 
color-related traits such as eye color, beak color, shank color, and feather color. This highlights the 
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diffi culty in correctly identifying native chicken breeds by visual inspection, especially for those 
lacking suffi cient experience and expertise.

 (a) Individual 1  (b) Individual 2  (c) Individual 3

 (d) Individual 4 (e) Individual 5
Figure 1 Samples illustrating the diversity of male Thai native chickens (Leung Hang Khao).

 (a) Individual 1  (b) Individual 2  (c) Individual 3

 (d) Individual 4 (e) Individual 5
Figure 2 Samples illustrating the diversity of female Thai native chickens (Leung Hang Khao).

 Despite the signifi cance of these breeds, surveys in Phitsanulok Province have yet to identify 
Leung Hang Khao chickens that fully meet breed standards for both males and females. The development 
breeds of chickens for fi ghting competitions have contributed to the current diversity of Thai native 
chickens, with the introduction of foreign breeds from countries such as Burma and Vietnam. These 
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imported breeds, characterized by distinct comb shapes, feather colors, beak colors, and shank colors, 
have been bred with Thai native chickens to enhance their fi ghting abilities (Laenoi et al., 2015; Thinh 
et al., 2015; Rotimi et al., 2016; Buranawit et al., 2016). This genetic diversity has prompted efforts by 
various organizations to conserve purebred Thai native chickens for future generations, including the 
organization of annual native chicken competitions. Accurately selecting and classifying purebred 
native chickens requires signifi cant expertise in phenotype analysis. Currently, genetic markers are 
used to identify gene patterns in conjunction with genetic assessments for breed verifi cation. However, 
this method is both costly and time-consuming (Vanhala et al., 1998; Okumura et al., 2006; Katano 
et al., 2011; Shimogiri et al., 2012; Dorji and Sunar, 2014; Siriwadee et al., 2023). To address these 
challenges, deep learning networks-based classifi cation methods are relatively suitable for improvement 
of the accuracy and effi ciency of breed classifi cation in a shorter time frame, owing current 
technological advancement.
 Currently, one of the most important technologies is the Artifi cial Intelligence (AI), which 
involves the development of machines to be intelligent, capable of recognizing, distinguishing, and 
processing images, sounds, and text through a computing brain that mimics the neural network system 
of the human brain. The machine's computing brain is powered by machine learning, which works 
by learning from input-output data and applying that knowledge to analyze, predict, or drive various 
functions for AI. Deep learning is a sub-fi eld of machine learning that shares the same goal but 
employs a learning technique characterized by an Artifi cial Neural Network (ANN) with multiple layers, 
known as a Deep Neural Network (DNN) (Samek et al., 2016). In 1998, the authors in Lecun et al. (1998) 
introduced a neural network with a convolutional operation by increasing the number of hidden 
layers in a 5-layer architectural structure called LeNet-5. This architecture enhances the effi ciency 
of calculating image features, and this technique is also known as Convolutional Neural Networks 
(CNNs). The working principle involves a feature extraction process, which isolates the distinct 
characteristics of objects in images, such as edges, curves, and slopes. These features are then input 
into the neural network for classifi cation to determine what the output image represents (Kittichai 
et al., 2021; Ren et al., 2022). 
 In recent years, machine learning algorithms have found successful applications in agriculture, 
particularly in animal science. For example, in (Xu et al., 2024), A multi-scale feature fusion network 
for Amur tiger re-identifi cation has been developed, effectively combining global and local features 
to enhance accuracy without the need for prior knowledge or complex annotations. However, this 
model may exhibit suboptimal performance on datasets of upright animals due to its feature segmentation 
approach, specifi cally designed for large quadruped mammals like tigers. Similarly, an automated system 
utilizing CNNs has been proposed in (Schork et al., 2024) for monitoring and analyzing dogs' sleeping 
patterns, achieving an 89 % similarity to manual observations, but this system is limited by variations 
in image quality and environmental conditions, which can impact accuracy. Likewise, deep-learning 
models have been evaluated for identifying laying hens' behaviors using YOLO algorithms, showing 
high accuracy in detecting hens on the fl oor, but encountering diffi culties in accurately classifying 
dust-bathing behaviors due to the inherent complexity of this activity (Sozzi et al., 2023). Another 
study introduces a deep learning model, KI-CLIP, aimed at monitoring endangered wildlife with 
limited data. While the model achieves high accuracy through the integration of expert knowledge, 
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it may face challenges in real-time adaptability and managing highly diverse environmental conditions 
(Mou et al., 2023). Furthermore, the work in (Zhang et al., 2023) presents the UA-MHFF-DeepLabv3+ 
model, a novel interactive segmentation approach that signifi cantly reduces annotation time for dairy 
goat images, offering a fi vefold improvement in speed over existing tools like Labelme. Nonetheless, 
the model still requires more than four clicks to achieve ideal segmentation accuracy, suggesting 
that further enhancements are necessary.
 Likewise, for research related to the application of CNN techniques in animal science, 
the following studies are notable Villa et al. (2017) used CNNs to classify wildlife. The authors in 
Hansen et al. (2018) utilized CNNs for pig face recognition. Yao et al. (2020) employed YOLOv3 for 
object detection to differentiate between male and female chickens from fl ock images and individual 
chicken images, then trained the data with CNNs. This method can be practically applied for 
gender classifi cation of chickens to calculate the appropriate sex ratio in free-range farming. The authors 
in Wang et al. (2020) used the LeNet-5 architecture for pig face recognition. Khan et al. (2020) 
applied deep CNNs with Rectifi ed Linear Units (ReLU) activation functions to classify animal faces. 
In 2020, CNNs were used to classify images of birds in the wild by Singh et al. The authors in Raj et al. 
(2020) modifi ed the VGGNet architecture for bird species classifi cation. Transfer learning techniques 
were employed by comparing with the architectures of VGG16, ResNet50, MobileNet, XceptionNet, 
and an 8-layer CNN to classify chicken droppings for disease diagnosis, fi nding that XceptionNet 
had the highest validation accuracy at 94 % (Mbelwa et al., 2021). These studies demonstrate 
that deep learning techniques-based CNNs continue to be researched and developed to achieve the 
most effi cient techniques for practical applications tailored to different animal species.
 From the review of related literature, no information was found regarding the use of CNN 
techniques for classifying Thai native chickens. Therefore, this paper proposes using this technique 
to classify images of Thai native chickens between purebreds and crossbreds, starting with the Leung 
Hang Khao breed, which is genetically diverse in plumage color and is commonly raised throughout 
all regions of Thailand. The objective of this study is to develop an appropriate architecture for 
Thai native chicken images to enhance the effi ciency of selecting purebred native chickens for 
conservation purposes. The LeNet-5 architecture, along with three architectures derived from LeNet-5, 
namely CNN1, CNN2, and CNN3, will be adopted. The data obtained from this study will serve as 
preliminary information for further studies on the classifi cation of other native chicken breeds, aiming 
to develop tools for classifying native chickens in the future. This research could provide valuable 
insights for the livestock industry, especially in Thailand.
 The major contributions of this work can be summarized as follows:
 1. To best of our knowledge, there are no studies that have applied CNN-based methods 
to classify Thai native chicken breeds, especially Leung Hang Khao. This work introduced four CNN 
structures to classify Leung Hang Khao so that the identifi ed results of Leung Hang Khao chickens 
can fully meet breed standards for both males and females, leading to no bias in annual Thai native 
competitions.
 2. The image dataset of Leung Hang Khao chickens was collected from two real fi eld sites. 
The dataset includes purebred Leung Hang Khao chickens from the fi rst site and crossbred chickens 
between Leung Hang Khao and Pradu Hang Dam breeds from the second site. A total of 200 chickens 
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(100 males and 100 females), all aged 20 weeks or older, were selected, with 50 chickens from each 
breed and gender. Images were captured using an OPPO Reno3 Pro smartphone.
 The remainder of the paper is organized as follows. Section II describes a theoretical 
background of CNNs-based approach. Section III presents the methodology of the study. The obtained 
results and discussion are given in Section IV. Finally, Section V concludes the paper.

Theoretical Background of CNN-Based Deep Learning

Convolutional Neural Networks (CNNs) represent a specialized architecture in deep learning, designed 
to handle grid-like data structures, such as images. CNNs are distinguished by their ability to learn 
spatial hierarchies of features through a series of operations including convolution, pooling, and fully 
connected layers. These operations are underpinned by specifi c mathematical expressions that 
govern the behavior and performance of the network.

1. Convolution Operation
  The core operation in a CNN is the convolution, which is mathematically defi ned as the 
sum of the element-wise multiplication of a fi lter or kernel  with the input matrix . For a given 
input image  of dimensions  (where  is the height,  is the width, and  is the number of 
channels), and a fi lter of  dimensions  (where  and  are the fi lter’s height and width), 
the convolution operation to produce the output feature map  is expressed by, (Equation (1)) 

 (1)

  where  and  iterate over the spatial dimensions of output feature map . This operation 
is typically followed by the application of a non-linear activation function, such as the ReLU.

2. Activation Function
  The ReLU activation function introduces non-linearity into the network, which is crucial 
for learning complex patterns. The ReLU is mathematically defi ned as, (Equation (2))

 (2)

  where  is the input to the activation function. ReLU is applied element-wise to output of 
the convolutional layer, enabling the network to learn non-linear representations of the input data.

3. Pooling Operation
  Pooling layer, such as max pooling, are used to reduce the spatial dimensions of the 
feature maps, thereby lowering the computational complexity and making the network invariant to 
small translations in the input. For a feature map  of demensions , the max pooling 
operation with a fi lter size  can be expressed as, (Equation (3))

 (3)

  where  is the down sampled output feature map, and  indexes overt the channels.
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4. Flattening and Fully Connected Layers
  After the convolutional and pooling layers, the multidimensional output feature maps are 
fl attened into a one-dimensional vector , which is then passed through fully connected layers. 
If  represents the weight and  represents the biased for a fully connected layer, the output  is 
given by, (Equation (4)) 

 (4)

  In the context of classifi cation tasks, the output from the fully connected layer is typically 
passed through a softmax function to produce a probability distribution over the target classes.

5. Softmax Function
  The softmax function is used in the output layer of a CNN when the task is to classify 
the input into one of several categories. Given a vector of raw scores  where  is the 
number of classes, the softmax function computes the probability  that the input belongs 
to class  as, (Equation (5)) 

 (5)

  This function ensures that the output probabilities sum to one, allowing for a probabilistic 
interpretation of the model’s predictions.

6. Loss Function and Backpropagation
  Training a CNN involves minimizing a loss function that measures the discrepancy between 
the predicted output and the true labels. For classifi cation tasks, the cross-entropy loss is commonly 
used, which is defi ned as, 

 (6)

  The loss function defi ned in Equation (6) represents the cross-entropy loss, which is 
fundamental to the training process of the CNN models used in this study for classifying Thai native 
chickens. It measures the discrepancy between the predicted class probabilities and the true labels, 
enabling the network to adjust its parameters through backpropagation and gradient descent. 
By minimizing this loss, the CNN learns to improve its classifi cation accuracy across the four chicken 
categories: purebred male, purebred female, crossbred male, and crossbred female. The effectiveness 
of this loss function is refl ected in the study’s results, where the CNN1 model, trained with this 
function, achieved 100 % accuracy, demonstrating the model’s ability to distinguish subtle visual 
differences in chicken breeds.
  where  is true label (represented as a one-hot encoded vector) and  is the 
predicted probability for class . The parameters of the network (i.e., the weights and biases) are 
updated using the gradient descent algorithm, which relies on the backpropagation method to 
compute the gradients of the loss function w.r.t. the network’s parameters as, (Equation (7))
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 (7)

  where  represents the parameters, and  is the learning rate.
7. Convolutional Hierarchies and Feature Learning

  CNNs exploit the hierarchical nature of images by stacking multiple convolutional layers. 
Early layers typically capture low-level features such as edges and textures, while deeper layers 
typically capture more abstract features such as shapes and objects. This hierarchical feature 
extraction is a key advantage of CNNs over traditional methods, as it allows the network to 
automatically learn relevant features from the data, leading to improved performance in complex 
visual tasks. 

8. Regularization Techniques
  To prevent overfi tting, various regularization techniques are applied in CNNs, such as 
dropout, where randomly selected neurons are ignored during training. Dropout can be expressed 
mathematically as, (Equation (8))

 (8)

  where  is a binary mask vector (with each element drawn from a Bernoulli distribution), 
is  the output of the l-th layer, and  denotes element-wise multiplication

9. Accuracy
  Accuracy is a commonly used performance metric to evaluate the effectiveness of a 
Convolutional Neural Network (CNN), especially in classifi cation tasks. It represents the proportion 
of correctly classifi ed samples out of the total number of samples evaluated. The accuracy can be 
calculated using the following formula (Equation (9)):

 (9)

 Explanation:
 TP (True Positives):  The number of samples that are correctly predicted as positive.
 TN (True Negatives): The number of samples that are correctly predicted as negative.
 FP (False Positives): The number of negative samples that are incorrectly predicted as positive.
 FN (False Negatives): The number of positive samples that are incorrectly predicted as negative.

 The mathematical foundation of CNNs enables the automatic learning of spatial hierarchies 
in data, which is critical for tasks involving complex and high-dimensional inputs such as images. 
Through the combined use of convolution, pooling, and fully connected layers, CNNs are able to 
effi ciently process and classify visual information, making them indispensable in modern deep 
learning applications. The structure of a CNN is divided into layers, which consist of the input layer, 
hidden layers, and the output layer. The number of units or nodes in the output layer depends on 
the number of categories (classes) in the image dataset, as shown in Figure 3. If the probability value 
is highest for a particular category, that category is considered the predicted answer.
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Figure 3 Workfl ow of the CNN architecture.

 Figure 3 illustrates the process of the CNN structure as it performs image classifi cation, 
specifi cally focusing on identifying different types of chickens (e.g., Purebred male, Purebred female, 
Crossbred male, Crossbred female). The process begins with an input image of a chicken, which is fed 
into the network. Then, the image passes through multiple convolutional layers, each applying a set 
of fi lters to generate feature maps that highlight various aspects of the image, such as edges, textures, 
and patterns. After each convolutional layer, pooling layers down sample the feature maps, reducing 
their spatial dimensions while retaining essential information. This process helps in making the network 
more robust to variations in the input image and reduces computational complexity. Once feature 
extraction is complete, the output from the fi nal pooling layer is fl attened into a one-dimensional 
vector, ready to be processed by fully connected layers. The fl attened vector is passed through one 
or more fully connected layers, where neurons connect to every neuron in the previous layer, 
allowing the network to learn complex patterns and relationships between the features extracted 
by the convolutional layers. The fi nal fully connected layer outputs a set of probabilities, each 
corresponding to a particular class. The class with the highest probability is selected as the predicted 
label for the input image. In this example, the network correctly identifi es the image as a Purebred 
male with high confi dence. The CNN architecture demonstrated in the fi gure is designed to perform 
image classifi cation by extracting relevant features from input images and using those features to 
make accurate predictions. This process is typical in many image classifi cation tasks, where the goal 
is to categorize images into predefi ned classes based on learned patterns.

Methodology

 This study presents the classifi cation of Thai native chicken breeds using CNNs-based 
approaches to identify the most suitable architecture for classifying images of Thai native chickens. 
The following steps have been undertaken.

1. Preparation of Thai Native Chicken Image Data
  In this work, Thai native chickens were sourced from two places specializing in breeding 
and improving chicken breeds under the supervision of experts, as follows.
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  1. Kabin Buri Poultry Research and Breeding Center in Prachin Buri managed by the 
Department of Livestock Development, Thailand, which is dedicated to collecting and developing 
Leung Hang Khao Thai native chicken breed.
  2. Faculty of Agriculture at Khon Kaen University, Thailand, which is involved in the 
collection and development of the Pradu Hang Dam Thai native chicken breed.
  3. The native chickens were kept in cages measuring 50 cm x 80 cm x 1 m, with one chicken 
per cage, in an open housing environment maintained at around 30 degrees Celsius. During the 
experiment, feed and clean drinking water were available ad libitum and the diets were provided 
twice daily at 8:00 AM and 4:00 PM. This research was approved by the Animal Ethics Committee 
with license number 06/2564/IACUC.
  For image collection, purebred Leung Hang Khao chickens from the fi rst source and 
crossbred chickens between the Leung Hang Khao and Pradu Hang Dam breeds (produced from 
parent chickens sourced from both locations) were used. A total of 200 chickens (100 males and 
100 females), all aged 20 weeks or older, were selected, with 50 chickens from each breed and 
gender. Images were captured using the OPPO Reno3 Pro smartphone model CPH2037, which has 
a quad camera system with specifi cations of 64 MP + 13 MP (Telephoto) + 8 MP (UltraWide) + 2 MP 
(MONO) and a maximum image resolution of 3,120 x 4,160 pixels.
  The photo setup included a white table covered with a white future-board to prevent 
the chickens from slipping during photography. The background was a whiteboard grid with 
1 x 1 square inches for measuring the height of the chickens. A white background was used to ensure 
a consistent environment for all photos as seen in Figure 4 The distance between the camera 
and the chickens was set at 80 cm to maintain uniformity in the image capture. A total of 250 images 
were taken for each group, resulting in 1,000 images in total.

 (a) Leung Hang Khao purebred male  (b) Leung Hang Khao purebred female

 (c) Crossbred male (d) Crossbred female
Figure 4 Samples illustrating the Thai native chicken.
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2. Verifi cation Tools 
  This work was conducted using Python programming language with Jupyter Notebook. 
Jupyter is an Interactive Python that uses a web browser interface, functioning in a server-client 
model. The backend processor is IPython, and it operates through a JupyterLab server in a Localhost 
environment (Localhost:8888) (Toomey, 2018; Muttenthaler and Hebart, 2021).

3. CNN Models and Verifi cation
  The architectural structure used in this experiment is a simple architecture developed 
specifi cally to determine the appropriate architecture for classifying Thai native chickens. The model 
testing begins by inputting images of Thai native chickens and resizing them from 3,456 x 3,456 pixels 
to 224 x 224 pixels, then scaling the data to have values between 0 and 1 using the normalization 
method by dividing the data by 255. The data is divided into three sets: the training set, the 
validation set, and the test set. The model is tested with the following ratios: 60:20:20, 70:20:10, 
and 80:10:10. The architecture is created, and the model is tested three times, after which the 
average is calculated. The number of epochs used in processing is set at three levels: 10, 20, and 
50 epochs as seen Figure 5.
 In Figure 5, it is illustrated the process of CNN-based classifi cation of Thai native chickens 
using different CNN architectures. The process begins with an input image of size 3,456 x 3,456 x 3, 
where 3 represents the RGB color channels. The image undergoes pre-processing, which includes 
resizing and rescaling. Resizing likely adjusts the image dimensions to match the input requirements 
of the CNN models, while rescaling normalizes the pixel values, typically between 0 and 1, to standardize 
the input data. After pre-processing, the image is passed through various CNN architectures, including 
LeNet-5, CNN1, CNN2, and CNN3. Each architecture processes the image to extract features that 
help in differentiating between different classes of chickens. The output layer then classifi es the 
image into one of four possible classes, which could represent different breeds of Thai native chickens. 
The fi gure emphasizes the experimental approach of using multiple CNN architectures to determine 
the most effective model for accurate classifi cation.

Figure 5 An overview structure of the proposed classifi cation-based CNNs of Thai native chicken 
  with Lenet-5, CNN1, CNN2, and CNN3.
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4. Performance Evaluation
  The performance evaluation of the model was conducted using a confusion matrix, 
including key metrics such as True Positive (TP), representing data correctly predicted as belonging to 
the considered group; True Negative (TN), which is data correctly predicted as not belonging to the 
considered group; False Positive (FP), where data is incorrectly predicted as belonging to the 
considered group; and False Negative (FN), where data is incorrectly predicted as not belonging to 
the considered group. These prediction values are essential for calculating the accuracy, following 
the method described in Equation (9) (Krstinić et al., 2020; Arias-Duart et al., 2023), as given by,
  In this experiment, 28 images were randomly selected from the dataset of Thai native 
chicken images, with 7 images per group, to test the prediction accuracy. The number of correctly 
predicted images by the model was counted, and the percentage accuracy was calculated to 
measure the model’s performance

Results and Discussion

The application of CNN-based techniques for classifying images of Thai native chickens aims to identify 
the most suitable architecture for this task. The goal is to gather data to develop effi cient tools for 
classifying the Thai native chickens using images. Four groups of Thai native chickens were used in the 
experiment: purebred Leung Hang Khao male, purebred Leung Hang Khao female, Crossbred male, 
and Crossbred female. Four architectures were tested: LeNet-5, CNN1, CNN2, and CNN3 (Figure 6), 
with different data split ratios for training, validation, and testing (60:20:20, 70:20:10, and 80:10:10) 
and training periods of 10 epochs, 20 epochs, and 50 epochs. The results showed that the CNN1 
architecture, with an 80:10:10 data split and 10 epochs, achieved 100 % accuracy in learning, 
validation, and testing, predicting correctly 100 % of the time with the shortest processing time. 
This was likely due to CNN1's minimal convolutional layers, only two. Additionally, CNN1, CNN2, and 
CNN3 exhibited more stable training and validation accuracy and loss compared to LeNet-5, with 
stability beginning around the 10th epoch. When training 50 of epochs with an 80:10:10 data split, 
all four architectures achieved 100 % accuracy. This demonstrates that deep learning using simple 
CNN architectures can effectively classify images of Thai native chickens, consistent with previous 
studies using this technique to classify various bird species. For example, the authors in (Singh et al., 
2020) used CNNs to classify fi ve bird species from smartphone images taken in natural environments, 
achieving 93 % learning accuracy and 80 % testing accuracy. The work presented in (Raj et al., 2020) 
used a modifi ed VGGNet architecture to classify 60 bird species with 93.19 % learning accuracy and 
84.91 % testing accuracy. In (Yao et al., 2020), the authors used six different CNN architectures to 
classify male and female chickens, fi nding VGG-19 to be the most accurate at 96.85 %. Other studies 
have applied CNNs to classify wild animals and livestock, achieving high accuracy with architectures 
like ResNets and LeNet-5.
 Although the CNN1 model was able to classify images of Thai native chickens with 100 % 
accuracy on the test dataset prepared in this study, such results were achieved under highly controlled 
conditions, such as neutral backgrounds, consistent lighting, and images captured from a standardized 
angle. Furthermore, the test dataset was relatively limited in size, which may not adequately refl ect 
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the model’s applicability in diverse real-world environments. Therefore, further experiments using 
external datasets or real-world scenarios are necessary to validate the model’s performance in more 
varied and challenging contexts.

 (a) LeNet-5 (b) CNN1 (c) CNN2 (d) CNN3
Figure 6 The architectures of CNNs-based approaches.

 (a) LeNet-5  (b) CNN1

 (c) CNN2 (d) CNN3
Figure 7 The training and validation accuracy and loss curves for four different convolutional neural 
  network architectures over 50 epochs.
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 Table 1 presents a comparison of different neural network architectures LeNet-5, CNN1, 
CNN2, and CNN3 used to classify Thai native chicken. These architectures are evaluated based on 
various metrics including training accuracy, validation accuracy, testing accuracy, and prediction 
accuracy across different data splits (60:20:20, 70:20:10, and 80:10:10). Across the architectures, CNN1, 
with a data split of 80:10:10 and an execution time of 104 seconds, exhibits the most consistent 
and superior performance, achieving 100 % accuracy across validation, testing, and prediction stages. 
This indicates that CNN1 is the most effi cient and reliable model for this classifi cation task.
 Notably, although LeNet-5 also performs well with high accuracy scores across all stages, 
it falls short compared to CNN1, especially in terms of testing and prediction accuracy where CNN1 
consistently hits 100 %. Furthermore, CNN1 achieves these results with a relatively low computation 
time of 104 seconds, highlighting its effi ciency. In contrast, other architectures like CNN2 and CNN3, 
despite also achieving perfect scores in certain instances, require longer execution times, which 
may not be optimal for real-time applications. The results suggest that CNN1, particularly with the 
80:10:10 split, is the most effective model, balancing high accuracy and low computational cost.
 The graphs presented in Figure 7 illustrate the training and validation accuracy, as well as 
the training and validation loss, for four deep learning models LeNet-5, CNN1, CNN2, and CNN3 over 
50 epochs. The accuracy graphs for all models reveal that each architecture rapidly achieves high 
accuracy within the fi rst 10 epochs, with minimal differences between training and validation 
accuracy thereafter. This rapid convergence suggests that the models are highly effi cient in learning 
the necessary features for classifying Thai native chickens. Among the architectures, CNN1 and CNN2 
demonstrate the most stable and consistent accuracy, achieving nearly perfect alignment between 
training and validation accuracy early in the training process. LeNet-5, while ultimately achieving 
high accuracy, exhibits a more noticeable fl uctuation in the initial epochs, indicating that it requires 
more time to stabilize. Similarly, CNN3 shows a slight gap between training and validation accuracy 
during the initial epochs, which closes as the training progresses.
 The loss graphs further corroborate these observations, with all models showing a signifi cant 
reduction in both training and validation loss within the fi rst few epochs. The graphs for CNN1 and 
CNN2 display the most rapid decline, with loss values approaching zero early in the training, refl ecting 
their strong generalization capabilities. LeNet-5 and CNN3, however, exhibit a more gradual reduction 
in loss, particularly in the initial epochs, which aligns with the fl uctuations observed in their accuracy 
graphs. Despite these initial variations, all models converge to low loss values, indicating effective 
learning. The close alignment of training and validation loss across all models also suggests that 
there is minimal overfi tting, reinforcing the robustness of these architectures. Therefore, the analysis 
indicates that CNN1 and CNN2 are the most effi cient and stable architectures for this classifi cation 
task, while LeNet-5 and CNN3, though effective, require more epochs to achieve similar performance.
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Table 1  Comparison of Four Different CNN Architectures Used to Classify The Thai Native Chickens 
  Which Is Presented As Means ± Standard Deviation (S.D.)

     Training Validation Testing 
Prediction

 Architecture Ratio Epoch Time (s) Accuracy Accuracy Accuracy 
(%)

     (%) (%) (%)  

 LeNET-5 60:20:20 10 237 99.33±0.51 97.92±0.27 97.77±0.25 97.50±0.28
   20 420 96.38±0.89 96.35±0.85 95.98±0.59 95.00±0.95
   50 754 100±0.00 97.40±0.81 97.32±0.84 97.75±1.08
  70:20:10 10 237 100±0.00 98.96±0.51 99.22±0.33 100±0.00
   20 425 100±0.00 98.96±0.72 99.22±0.26 99.33±0.51
   50 746 100±0.00 96.88±0.58 96.88±0.89 99.33±0.51
  80:10:10 10 236 100±0.00 100±0.00 97.92±0.47 100±0.00
   20 410 99.87±0.29 99.48±0.05 98.66±0.51 99.33±0.51
   50 748 100±0.00 97.92±0.27 100±0.00 100±0.00

 CNN1 60:20:20 10 106 100±0.00 98.96±0.87 98.66±0.51 100±0.00
   20 141 100±0.00 98.44±0.39 99.11±0.32 100±0.00
   50 347 100±0.00 98.68±0.93 95.26±0.75 97.50±0.95
  70:20:10 10 102 100±0.00 99.48±0.53 100±0.00 100±0.00
   20 160 100±0.00 100±0.00 100±0.00 100±0.00
   50 347 100±0.00 100±0.00 98.96±0.40 100±0.00
  80:10:10 10 104 100±0.00 100±0.00 100±0.00 100±0.00
   20 157 100±0.00 100±0.00 99.22±0.29 100±0.00
   50 346 100±0.00 100±0.00 99.22±0.25 100±0.00

 CNN2 60:20:20 10 121 100±0.00 100±0.00 100±0.00 100±0.00
   20 168 100±0.00 100±0.00 98.86±0.36 100±0.00
   50 395 100±0.00 98.96±0.75 98.96±0.12 100±0.00
  70:20:10 10 119 100 ± 0.00 100 ± 0.00 100 ± 0.00 100 ± 0.00
   20 172 100±0.00 99.22±0.32 98.53±0.39 100±0.00
   50 396 100±0.00 98.75±0.85 100±0.00 100±0.00
  80:10:10 10 115 100±0.00 98.96±0.36 99.22±0.22 100±0.00
   20 178 100±0.00 100±0.00 99.22±0.29 100±0.00

   50 392 100±0.00 98.96±0.98 100±0.00 100±0.00

 CNN3 60:20:20 10 122 98.86±1.09 92.71±0.85 92.97±0.95 92.50±0.59
   20 184 100±0.00 98.96±0.78 100±0.00 100±0.00
   50 415 100±0.00 98.25±0.74 100±0.00 100±0.00
  70:20:10 10 119 98.86±0.83 92.71±0.46 92.97±1.05 95.00±0.19
   20 191 100±0.00 98.96±0.83 100±0.00 100±0.00
   50 416 100±0.00 99.22±1.01 100±0.00 100±0.00
  80:10:10 10 114 99.87±0.46 100±0.00 100±0.00 100±0.00
   20 186 100±0.00 98.96±0.69 99.22±1.05 100±0.00
   50 402 100±0.00 100±0.00 100±0.00 100±0.00
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Figure 8 The confusion matrix for the performance evaluation of the classifi cation model.

 The confusion matrix in Figure 8 shows the classifi cation performance of the best model 
for distinguishing among four categories of Thai native chickens: purebred male, purebred female, 
crossbred male, and crossbred female. The matrix demonstrates perfect classifi cation accuracy, as all 
28 images in each class were correctly identifi ed without any misclassifi cations. This result highlights 
the model’s ability to effectively learn and distinguish between the subtle differences in the visual 
features of the chickens across different breeds and genders. The complete diagonal alignment, with 
no off-diagonal errors, further emphasizes the robustness and precision of the model, validating its 
suitability for the task of poultry classifi cation.

Conclusion

 This paper introduced the employment of deep learning techniques with CNNs for classifying 
Thai native chickens, specifi cally the Leung Hang Khao breed. The fi ndings demonstrated that the 
CNN1, which was of simple design and setting, was the fastest and most effi cient in classifying Thai native 
chicken images. The CNN1 architecture achieved 100 % accuracy in learning, validation, testing, and 
prediction, making it useful for verifying the Thai native chicken breeds and reducing the variability 
in judgments made by committee members with differing levels of experiences during Thai native 
chicken competitions. Moreover, the introduced technique aided farmers in accurately selecting 
breeding pairs for preserving Thai native chicken breeds. 
 Future work will focus on increasing the number of datasets for other Thai native chicken 
breeds and may involve refi ning the deep learning model to improve its effi ciency and accuracy in 
classifying a variety of the native chicken breeds.
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