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Abstract

In this paper, we apply the notion of (p,q)-calculus or post quantum calculus to establish
theoretical results of (p,q)-analogues of Laplace-type integral transform of the first and
second kind, which is a symmetric relation between (p,q)-analogues of the Laplace-type integral
and Laplace transforms. Additionally, we discuss (p,q)-analogues of Laplace-type integral
transform on various classes of some (p,q)-special functions, (p,q)-exponential function,
(p,q)-trigono-metric types, (p,q)-differential operator, and (p,q)-convolution theorem. Finally,
we establish results related to (p,q)-Aleph function.
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Introduction

Quantum calculus, also called g-calculus known as calculus without limits, has been
used in the applications of diverse areas such as mathematics, applied mathematics, and physics.
Euler was the first mathematician to study quantum calculus in the early eighteenth, which
Gauss and Ramanujan later developed. In 1910, Jackson [1], [2] introduced the g-derivative, or
Jackson derivative, and the g-integral, or Jackson integral. Many researchers have come up

with the generalization and development of the g-calculus as found in [3] - [12] and their

respective references. Also, the fundamental explanation of the g-calculus aspects can be found
in the book by Kac and Cheung [13].

Around a decade ago, the topic of the g-integral transform piqued many researchers’
interest, leading to various investigation forms. Many researchers study the properties of g-
integral transform such as g-Laplace transform of two variables [14], g-analogues of Sumudu
transform [15], q-analogues of the Laplace transform [16], q-analogues of the natural
transform [17], g-analogues of the Laplace-type integral transform [18], and g-theory of the g-
Mellin transform [19], see [20] - [22] for more details.

The post quantum calculus, indicated as (p, q)-calculus, is a generalized form of g-
calculus that was first considered in 1991 by Chakrabarti and Jagannathan [23]. It is pertinent
that the direct substitution of q by q/p in g-calculus cannot provide valid quantum calculus;
however, if p =1 in (p,q)-calculus, it will reduce to g-calculus. In 2013, Sadjang [24] studied
the concept of the (p,q)-derivative, the (p,q)-integration, the fundamental theorem of (p, q)-
calculus, and the (p,q)-Taylor formulas. The studies and developments of the (p, q)-calculus
have been conducted many times as found in [25] - [28] and their references. A slew of extensive
research about (p, q)-integral transforms can also be seen lately. many researchers study the
properties of (p,q)-integral transform and apply some (p,q)-differential equations such as
(p, q)-analogues of the Laplace transform [29], (p, q)-analogues of the Sumudu transform [30],
and (p, q)-analogues of Laplace-type integral transforms [31].

Many integral transforms are created to solve diverse differential equations. One of the
most well-known integral transforms is the Laplace transform, which is wildly and extensively
used in several branches of applied mathematics and engineering [32]. In 1991, Yurekli and
Sasek [33] established a new integral transform, called the Laplace-type integral transform,
which is defined by

Lo(F(); ) = f,” #F(w)exp(—»?§2)dx, Re(t) > 0.

It is a close relation to the Laplace transform given as
L (F(0); §) = 5 L(FR30); 8),

In the past century, the generalized H-functions have been established. In 1998, Sudland et al.
[34] introduced a generalization of Saxena’s I-function [35], which is considered to be another
form of the generalization of Fox’s H-function. This function is also named as Aleph function.
In 2019, Bhat et al. [36] introduced g-Sumudu and g-Laplace transforms of the g-analogue of
Aleph function. In 2020, Tassaddiq extended Bhat’s and others’ study to (p,q)-Sumudu and
(p, q)-Laplace transforms based on (p, q)-Aleph function [37].

We are greatly inspired by a series of the above-mentioned literature, and therefore,
propose to extend the g-analogues of the Laplace type integral transform to this new (p, q)-
analogues of the Laplace type integral transform of the first and second kind while giving some
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properties such as (p,q)-special functions, (p,q)-exponential function, (p,q)-trigonometric
types, (p, q) -differential operator, and (p,q)-Aleph function, which could be practically be
utilized to solve some (p, q)-differential equations.

The outline of this paper is as follows: Section 2 consists of some basic knowledge of g
and (p, q)-calculus that is used in the following sections; Section 3 is comprised of some (p, q)-
special functions of the (p,q)-analogues of Laplace-typed integral transform; Section 4
demonstrates the (p, q)-differential operator; Section 5 shows the (p, q)-convolution theorem;
in Section 6, we write (p,q)-analogues of Laplace-typed integral transform for (p,q)-Aleph
function; and the last section includes the conclusion.

The q and (p, q)-calculus

In this section, some mathematical symbols used in the (p, q)-calculus are denoted to be
of help in further study and can be found in [23] - [25], [29]. In the entirety of this work, let
0 < q<p<1 beconstants. If p =1, then we can reduce (p,q) of any forms to g-classical, see
[13].

The (p, q)-number for n € N is defined by

[Pl g pq#1;
p_q ) ) )
[nlpq =pP""+p" g+ +q"7t = 4 [nlg ifp=1; (1)
Ikn, if p = 1 and take lirr11.
q—)

Also, we write the (p, q)-factorial for n € N is defined as

]._[]n=1 [j]p,q = [1]p,q[2]p,q [n]p,q: if n>1;
1:

if n=0. @

! = {

If p=1 in(1) and (2), then we called this the g-number and g-factorial, respectively, see [13].
The (p, q)-derivatives of a function F:[0,) — R is defined by

F(p)—F(an)
D, oF = , 0,
paF () x0T (3)
D, (F(0) = Lll‘)l’(l)Dp'qF(K).

If p =1 in (3), then we called this the g-derivative of the function F, see [13].
The (p, q)-derivatives of higher order are given by

(DY qF)(0) =F(®) and (Df F)(») = Dy q(DF4'F)(), ke N.

Example 2.1 Define the function F:[0,0) > R by F(x) = «3 + »? + 2u +r, where r isa
constant, then

D (K?’ NCIE I‘) _ (P33 +p2u®+2pu+r)—(q3x3+q2n2 +2qu+r)
pq (p-qx

_ @3-+ -g*)n*+2x(p—q)

- (-

= (P*+pq+q* )+ (p+n+2

= [3lpgt* + [2lpqn + 2.
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The (p, q)-derivatives of the product and quotient rules of two functions are as follows:

Dpq(FG0g(1)) = F(pr)Dp q8(1) + g(qn)Dp gF(n), 4)
and
@ _ g(qu)Dp,qF(M)_F(qu)Dp,qg(M)
Ppg (g(u)) = 2(pE(@n) » 800 #0. ()

If p=1 in (4) and (5), then we called these the g-derivative of the product and quotient rules
of two functions, respectively, see [13].
The (p, q)-integral from 0 to a and from 0 to o of F are defined as

a ® k k
i Foodpgx = (0 — Da i, - F (5h7a) (6)
and

o . k k
Iy FOOdp g1 = (0~ @) TR 57 F (i), (7
respectively. If p =1 in (6) and (7), then we called these the g-integral from 0 to a and from

0 to oo, respectively, see [13].
The (p, @)-integral in an interval [a,b] of Dy F is given by

[P DpgFOd, g = F(b) — F(a).

The (p, q)-integration by parts representation as
[ 8(@ODygFGOd, qx = F(b)g(b) — F@)g(a) — [ F(p) (Dpag00) ) dps  (8)

also note that b = oo is allowed. If p =1 in (8), then we called this the g-integration by parts,

see [13].
The two types of (p, q)-exponential functions are defined in [29] as follows:
) = Xn O 9)
ep,q(®) = Xn=o gt
()
Epq(0) = Zizo o x" (10)

lpg! "~

If p=1 in (9) and (10), then we called these the g-exponential function, see [13].
In addition, the derivative of the (p, q)-exponential functions are given as

Dp q€p,q(n1) = nep, (npxn),
Dy qEpq(mn) = nE, ¢ (ngn).

The (p, q)-trigonometric functions cosine and sine are as follows:

2n
ep,q(0)+ep q(—in) . (_1)np(z )
cosp () = g oL _ P4 =y>, _[Zn]p'q! 2n, (11)
2n
_ Ep,q(iu)+Ep,q(—ix) T (_1)nq(z ) 2
Cospq() = ——————— = Xn=o Tyl " (12)
ep qin)—ep q(—=in) (—1)“p(§n+1)
Sinp,q(”) = % = Z;’]Ozo [2n+—1]p’q!x2n+1’ (13)
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Ep q(in)—Ep q(—in) (-1)“q@n+1)
Sinpq() = 2L - g S TYEe WL (14)
If p=1 in (11)-(14), then we called this the g-analogues of the trigonometric functions cosine
and sine, see [13].
The function of the hyperbolic (p,q)-cosine and the hyperbolic (p,q)-sine of » are as
follows:

__epq()tepq(—n) . __epq()—epq(—n)
pat=—"—— — and sinhygn ="t (15)

cosh
If p=1 in (15), then we called this the hyperbolic (p, q)-cosine and the hyperbolic (p, q)-sine
functions, see [16].
The first kind of the (p, q)-gamma function is defined in [29] as follows:

n(n-1) .
g =p 2 fo wLEp o (—qr)dp gH. (16)
It satisfies the following properties:
Ipq(m+1) =[n],q[q(m) and T,,(n+1)=[n],q 17)

If p=1 in (16) and (17), then we called these the g-gamma function of the first kind and
properties of q-gamma function, respectively, see [13].
The second kind of the (p, q)-gamma function is defined in [29] as follows:

n(n—-1

Ypq(m) = qT) fooo 1 tep g (—pr)dp g.
The above equation satisfies the following properties:
Ypgm+ 1) = [n]pqvpq(M) and ypq(m+1) =[n],q (18)
The (p, q)-integral on (0,0) for B € R\{0} is given by
[ E(Br)dp gn = % I E@)dp gn. (19)
The (p, q)-beta function is defined as
By q(s,t) = fol w1 = qu)p g dp gt (20)

The relation between the (p, q)-gamma function and the (p, q)-beta function is

0—0(2275“—2) Tp,q($)p,q(®
Tpg(s+t)

Bpq(s,t) =p 21

If p=1 in (20) and (21), then we called these the g-beta function and the relation between the
g-gamma function and the g-beta function , see [13].
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The (p, q)-Aleph function is defined by Jain el al. [27] as follows:

R (z- 0 q)l(athj)l,n; [ti(@ji, Ajdln+1p; |
Pravtet \ ™ 2 by, By 1,ms [Ti(bji, Bji) Im+1,q;
1

21y
qj Pj -
fL Zir=1Ti[Hj=lm+1 [p,q(1-bji—Bjis) ]'[].=‘n+1 Fp,q(a]-i+A]-is)Fp,q(s)Fp,q(l—s)smns] ’

l'[]-nzl1 Tp,q(bj+Bjs) ]'[]-n:1 Tpq(1—aj—Ajs)mz~5dp gs (22)

where z # 0, = +v/~1, and L is contour of integration running from —ioo to +ico in such a
manner so that all poles of T} 4(bj + Bjs); 1 < j < m are to right of the path and those of T, (1 —
aj — Ajs); 1 <j <n, are to left. The integral converges if Re[slog(z) — log(sin(ms))] < 0, for
large values of |s| on the contour L. If p =1 in (22), then we called this the q-Aleph function,
see [11].

The (p, q)-analogues of Laplace-type integral transform to some
(p, q)-special functions

In this section, we evaluate 4L, (first kind) and 4L, (second kind) of some special
functions, which are defined in Definition 3.1.

Definition 3.1 The (p, q)-analogues of Laplace-type integral transform of function
F(»),Re(§) > 0 is defined by

pala(F0O;§) = [J° vFOOE, o (—qx?§2)dp g, (23)
and

pal2(FGO;E) = [ wF(0)ep q (—pr2ER)dp gn. (24)

If p =1 in(23) and (24), then (23) and (24) reduce to the g-analogues of Laplace-type integral
transform of function F(x), which appeared in [17].

Theorem 3.1 (Linearity): Let F(x) and g(») be two functions, then the following formula
holds:

(1) p,gLa(F() + dg(1); §) = Mp,qL2(F(0); &) + dp qL2(8(1); §);
(11) p,qILZ(p-F(K) + dg(n); §) = p-p,q[[‘z (F(n);8) + q)p,qILZ (8(n); &);

where p and ¢ are constants.
Proof. Theorem 3.1 follows immediately from Definition 3.1. o

Theorem 3.2 (Scaling): Let f(wx) be a function, then the following formula holds:
(1) pal2 (Flam); &) = ép,q L, (F(n); \/_EB)'

(i) pLa(F(n);§) = 27 Lo(FGO; 1)

where w are constants.
Proof. The proof of part (i) and (ii) using (19), (23), and (24), and we get
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[o2]

pala(F@ ) = | %F(@10Epq (-8 )dpqn
0
1

o) 2 y 2
=—J, "FOOEpq (—qx (ﬁ) )dp,qx
=5, o L2 (P00 7).
pqlz(F(on);€) can be proven similarly.

Theorem 3.3 For f(x) = »?",n € N, the following properties hold:

(i) pqlo (27 8) = %
[z]p qP Ezn+2

(i) pqly (2™ §) = —[:Q,m) .
[z]p,qq 2 EZn+2

Proof. The proof of part (i) requires the use of (16) and (23). We get

pal2 (" 8) = [ w2 By o (— g8 ) dp g

By the change of variables ®*§* = z, we obtain d, qu = ~ and get that

[2]

1 o
p,qLZ(Kzn; E) = [z]p,q§2n+2 f() ZnEp.q(_qZ)dp,qZ
[n]p,q!
n(n+1) .
[2lpgp 2 §20+2

The proof of part (ii) of this theorem follows a similar process from the proof of part (i).
Therefore, the proof is completed.

Theorem 3.4 For n € N, then the following properties hold:

(D) pgLz(ep,q () §) = m (n < pg);
, o)
(i1) pqllz (ep q(nM );8) = EZ ke 0 k(k+1)E 5
q 2k
o8

vee 1 o)
(111) p,qLZ (Ep,q(nxz); §) = 2 2k=0 K+ D >
[2]p.q% oz

EZk
; 2y.7) — 9 2
(iv) p,qH-'Z (Ep,q(nM )8 = [2]p,q(Q€2-n) (n < g§°).

Proof. The proof of part (i) utilizes (9), (23), and Theorem 3.3(i), and we have

palz(€p,q(Mu2); 8) = [7 uep o (n®)Ey, o (—qu?E2)dp g1
(k) -
=f Zk 0 ( ) qu(—quzgz)dp’q){
(k)nk
= Zk 0 [k] f K2k+1E ( qK E )dpq%
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By the change of variables ®?¢? = z, the equation above can be written as follows:

(3)nk
p\2/n Ipqk+1)
p,qLZ (ep,q(m’cz); §) = Z]o::O Ko p1?(k+1)

p.q- [Z]p,qp—z y2k+2

_ v pn*
_Zk=0 k(k+1)
[2]p’qp 2 §2k+2

1 0 n
- [z]p’qzz Zk=0 pkgzk
_ p 2
= Epaeem (<P

The proof of part (ii) share a similar process from the proof of part (i), which can be written
as follows:

o)

[Klp,q'

(o0}
fo K2k+lep,q (—pKZ Ez)dp,qx-

p,q]]-'z (ep,q(m‘tz); & = Zlio=0
The proof of part (iii) and (iv) procceds in the similar manners from the proof of part (i).
Hence, the proof is completed. m

Theorem 3.5 For n € N, then the following properties hold:

) p?g? .
(i) p,gLz(cosp q(nn?); §) = a2 oD (n? < p%&h);

2k
.. 1 a1z Jnzk
(ll) p.qH-‘Z (COSp_q (nxz); E) = 2]p €2 Zk=0 qk@kFD g >

2k
1 o (DG Jn2k.
(iii) pql2 (Cosp,q(m{z). §) = 2t Yk=o pk@k+D gk

~ 9’8
(iv) pqlLz (Cosp,q(nn?); ) = @5 D (n? < q*gh).

Proof. The proof of part (i) can be done using (11), (16), and (23), and we obtain the following:

p,qlz(cosp q(nn?); §) = fom ncosy g (Mn?)Ep, o (—qu?€?)dp, g

R
=2ke0 T

T fo K4k+1Ep,q (_qKZ Ez)dp,qx'

By applying the change of variables #?2 = z, the equation above can be put into the form

2k
(—1)“p(2 Jozk 4
[2Klpq!  [2]p,q&*K*?

(29
—ye (-1¥p'2 /n?kry 4 (2k+1)
— 4k=0 [Zk]p,q![Z]p,qpk(2k+1)z4k+2

= a2 (~5p)

=L (07 < p%EY)
[2]pq(P2E*+12) ps)-

p,qlz(cosp q(Mu?); §) = Yl fo 2%KE q(—qz)dp gz

The proof of part (ii) uses a similarly process from part (i). We write
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2k
o (0% I o
palz (cosp_q(nxz); H=Yr, T fo “4k+1ep,q(—qn222)dp,q”'

The proof of part (iii) and (iv) follows the same procedure from the proof of part (i). Hence,
the proof is completed. m

Theorem 3.6 For n € N, then the following properties hold:

np .

(1) pqLZ (5mp q(nxz) E) = W (nz < p224),
2k+1

.. . ( 1) p( ) 2k+1 .

(11) p,q]LZ (Slnp_q(n){z); E) Zk 0 q(k+1)(2k+1)§4k+4’

2k+1
(n¥qle o2kt
(lll)pqLZ(Smp q(m{ ) E) Zk 0 [2 p(k+1)(2k+1)§4k+4’

(iv) pqL2(Sing q(nn?); ) = % (n? < q2E%).

Proof. The proof of this theorem follows the definitions and proceeds according to Theorem
3.5. The details are, therefore, omitted. ]

Theorem 3.7 For n € N, then the following properties hold:

() pala(coshyq(me);§) = i (n? < p2g?);
(ii) p,qLa (sinhy o (n1?); §) = % (n? < p2gY).

Proof. The proof of Theorem 3.7 directly follows from (15), Theorem 3.5 and 3.6; therefore,
details are omitted. ]

Theorem 3.8 (Transforms of the Heaviside function): For b > 0, let

1, foru=b;
HGc—b) = {0, forO0<un <bh. (25)

Then, we have
Epq(~b)
(i) Lz (HO: —b);E) = 2

(i) pqLo(H(t = b); &) = epl('q;).

Proof. The proof of part (i) using (23) and (25). We obtain

palz(HOt —b);§) = [[7 wH(x — b)E, o (—qu?E?)dp g
= fboo HEp o (—qu?EH)d) 1.

By the change of variables z = ©?&2, we get d d;, 4z, and we obtain

1
nN=r0
pq [Z]p,qKEZ p.q

palz(HGt —Db); &) = Ez fb pq(—a2)dp gz
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1 [¢]
=- Zlpae? fb Dp,qEp,q(—2)dpqz
_ Epq(=b)
[2]pq8? "

The proof of part (ii) follows the same procedure from the proof of part (i). Hence, the proof
is completed.

Theorem 3.9 (Transforms of the Dirac delta function): For b > 0, let

1
fk(x_b):{i, forb<u<b+k; (26)

0, otherwise.
If 8(x — b) denotes the limit of fi, as k — 0, then we have

. . __ Epq(-gb)
(i) pala (8(x —b);§) = 21 =52,

(ii) pqLo(8(x — b); &) = alPY)

[2]pq8% ’

where delta is the Dirac delta function.
Proof. The proof of part (i) using (23) and (26). We get

p,qLZ (fk(}{ - b); E) = f0°° ka(n - b)Ep,q(_qKZ Ez)dp,q}t

1 btk
= Efb HEp o (—qu?E2)d,, g

By the change of variables z = *£?, we get dp qn = z, and we obtain

1
[2]p,q7E? dp'q

1 b+k

p,qLZ (fk(M - b); E) = [2]p,q&2k /D
1

b+k
T T 2lpgik Jo DpaEpa(=2)dpqz

~ o [Epa(—(0 + ) — Epq(-b)].

Ep‘q(—qz)dp,qz

If we take the limit of f; as k — 0, then

Ep,q(—ab)

palz2(8(« =Db);§) = limp qlLa (fic(x = b); §) = =) ==

The proof of part (ii) follows the same procedure from the proof of part (i). Hence, the proof
is completed. i

The (p, q)-analogues of Laplace-type integral transform to the
first order (p, q)-differential operator

We offer this section to computations related to the ,,L, and p4L,, and some
differential operators. First and foremost, we derive the following theorem:

ISSN 3027-6756 (Online)
Research on Modern science and Utilizing Technological Innovation Journal (RMUTI Journal)




. RMUTI Journal Vol. 17, No. 2 (May - August 2024)
NG > €256530

RMUTI Journal

Theorem 4.1 Let Re(€) > 0. Then, we have

(c1¥qla")

DpqBpa(#78%) = =18 o g —— (P + @ )gr (27)

Proof. Taking (p, q)-derivative on E, ,(—1*£?) with respect to » and shifting the lower bound
of the summation, we get

(), g2k
o 42/ (=178
Dp,qu,q(_KZEZ) =Dpq k=1 (Klpq!

[Klp,

=D q()

[Klp,q
=Dk q(k) k y2k—1g2k
= Xk=1 —( +a9[Kklpq 3
(—l)kq(lzm)

= Z]c;o 1 [Zk]pq n?k= IEZk

— 2y k+1 4 qk+1yg2k,, 2k
- KE Zk:o [k]p,q! ( + q )E no.
Hence, the proof of this theorem is completed. i
Theorem 4.2 Let Re(€) > 0. Then, we have
" (IZ<+1)
Dp,qep,q(_ngz) — _KEZ Zl?:o =D*p (pk+1 + qk+1)EZkK2k. (28)

[Klpq'

Proof. The proof of Theorem 4.2 is similar to the one of Theorem 4.1, which can be expressed

by
2%2 PCZ() 422k
Dpqp,q(—#*§%) = Dy q XiZq ™ ( £)
1yxplc")
= _“Ez Zﬁo:o Tzq!(pkﬂ + qk+1)EZkK2k'
Therefore, the proof is completed. m

Theorem 4.3 Let V,,  F(») = iDp,qF(n) and Re(%) > 0. Then, we have

§
pale(Vpq F00iD = FO +5 1,(Fooi )+ % 1,(Feoi).  9)
Ppa “pa
Proof. According to the (p, q)-integration by parts (8) and Theorem 4.1, we can write

oqLa (Vg FOO;E) = f Dy qFGOEp q (—2E2)dy g
0

= lim [F(K)qu( —n?E%) ] —f F(pr)Dp qEp q (—#2E2)dp gt
=—F(O) fo F(px)Dp,qu_q( —n?E2)dp gn

k+1

© o (DK (")
= —F(0) + £ ;" nF(p) T gt (0 + g g
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(—1)kq(]5+1)

= —F(0) + & fooo HF(pr) Zizo (K]p,q!

pk+1EZkK2kdp_qK
(1ql")
+82 [ uF(p) Ty —o—

k+1z2k,,2k
T q<TE dp,qx.

By the change of variables px = z, we get dp qn = édp,qz, and we obtain

(—1)kq(12(+1)

pala(Vpq FOO:8) = —f(0) + p™182 [ zF(2) Ty pTEHZERdp g2

[Klp,g!
o (cokqls )
+qp—222 fo ZF(Z) ZIC:’:O qu!quZkZka_dep’qZ.
Next, multiplying q=gX, we have
(c1kqls )
p,qLZ (vp,q F(n);§) = —F(0) + p_lfz fO zF(z) Zl?:o T:q!q_qup_kEZkZdep,qz

K1)
(1)

+ap~?8? [” 2F(2) Tio q74q"q" gz p~2d,, 2

[Klp,q!

k
_ o o (-DK ()
— —F(0) + 18 [ 7F(2) B0 ([k)T‘:!qkp kgzkg2kq g

k
_ o o (DX () _
+qp~?8 [ zF(z) Zilo ([QT?]!qZ“EZ“zZ“p dp, g2
. 2,2
= —F(0) + p'8 J;” ZF(@)Epq (- quz ) dpqz
_ © 2§2,2
+ap~?8? [ ZF(2)Ep,q (_ qp_zz) dp,qz

— _F(0) + %p’q Lo (Fo0i ) + ‘;%fp'q L, (FO0; L),

This completes the proof of the theorem. O

Theorem 4.4 Let V,  F(n) = iDp_qF(u) and Re(%) > 0. Then, we have

palzPpaF05D) = —FO) + 5 12 (FO0: ) 48,1 (FO0: ) (30)

Proof. Using (8) and Theorem 4.2, we have

o Lo (Vpq FGO; ) = fo DpqFG0ep o (—pr2E)dy g

. a [es)
= ;L%[F(”)ep,q(_xzzz)]po — Jy E(@0Dp qep q(—1*8*)dp g

ol

— —F(O) + EZ f0°° KF(qK) Z]?:O (pk+1 + qk+1)E2kK2kdp,qK

[Klp,q!
o0 (-D¥p 2 )
= —F(0) + & [ »F(qn) Yo Twpk“EZkqudp,qx
o0 okpls )
+8 [ HF (@) Timo 1 —— T8N d g

(Klp,q!
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Therefore, by the change of variables qn = z, we get dp qu = édp,qz, and the equation above

can be rearranged to the following form:

k+1

_ k
pal2(Vpq F0O; ) = —F(0) + 728 f zF(z)Z( f(]pq Pz gz
=0

GEON p(lzm)

+q—lzz f0°° ZF(Z) Z]?:o T k+1§2k22kq_2kdp_q2

Next, multiplying the previous equation by p~XpX, we get

(k+1

e [N CDE ) ;
pala(Tpg FOOSD) = —F(O) + 4728 | 2P(@) ), Tl pplpl gk i
k=0

_ 1)kpl2 _ _
+q 152f 2F(2) Zk 0( ) iq p kpqu+1§2kzqu dep,qZ

k
_ (=Dk ) -
— —F(O) +q ZpEZI ZF(Z) Zk 0 [k]—p ZkEZkZqu dep,qz

o kp(3)
2 [} o) B S B g g
= —F(0) + q?p&? f ZF(Z)epq( 222 )dplqz
+&2 fo zF(z)ep q (— pETz) dpqZ

=_ g ( @) 2 < i)
F(0) + o L, [ F(n); . +8°) gL F(M),Ja .
Hence, the proof is completed. i

The (p, q)-analogues of Laplace-type integral transform to the
(p, q)-convolution theorem

In this section, we put an emphasis on giving a (p, q)-convolution theorem for the 4L,
(pqlz is similar). Let us assume F(x) =»?Y and g(x) = »«*f~1,y,> 0, then the (p,q)-
convolution product is defined for F and g as

(F *8)pq(0) = J; F(gle — an)dpqn. (31)
If p=1 in (31), then (31) reduces to the g-convolution theorem, which appeared in [16].
Theorem 5.1 If F(») = »* and g(x) = »*#~1,y,8 > 0, then

g1 = RISy 4 @y )T (2B g (B L)
p,qLZ [(F g)p,q(”)' §] = [2]p,qTp,q(2y+2p+1)E2Y+2B+2

Proof. Using (20) and (31), we get

t _
(F*2)pq00 = [ n? (e — qn)®P~1d;, n
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= Kf r2Yu®Y (u — qrt) g b= dpqr
= p2v+28 fo r2v(1 — qr)zB 1 dp gl
= n?Y*2BB, , (2y + 1,2PB).
Taking 4L, in the equation above and using (21), we can write
Lo[(F * 8)p,q(0); €] = Bpq(2y + 1,2B) [, #®*2PE, ((—qu?ED)dp q
_ p@B-1)(4y+2p) [pa@V+Dlpq(2H) 2(v+B).
p Tpq(2y+2B+1) palz (x ;%)
— p(B-1)(4y+2p) Tpq(2y+1)Tp q(26) [y+Blp,q!
TpqQy+2p+1) [z]p,quzzvﬂﬁﬂ
pUPE YOV OV o 2y 41T (2B g (r+B+1)
- [2]p,qTp, q(2Y+ZB+1)§2y+ZB+Z
This completes the prood of the theorem. i

The (p, q)-analogues of Laplace-type integral transform to the
(p, q)-Aleph function

In this section, we derive 4L, and 4L, of the (p,q)-Aleph function with the help
of Mellin—Barnes-type integral and (p, q)-gamma function [38]. Now, we use notation

(]rA])lnr [Tl(a]v ]1)]n+1pl 1 s
R GO ) (e R YL L

where

Apl i, Ti; r(A B]' S) =

]_[j“;1 Ip,q(bj + Bjs) [iLy Tpq(1 —aj — Ajs)
HE [H 2m+1 Ipg(1 — bji — Bjis) H] 2n+1 IpqQ@ji + A4jis)Tp () (1 — s)simts]

Furthermore, taking t; = 1 in (22), we get the (p, q)-analogue of I-function defined by
Ahmad et al. [28] as follows:

@ A 10 [@jir Aji) Ins1p; 1
= L plqllr(A]’ Bj;s)mz%dpqs. (32)

0z (p,
pvq'fr( ® Dl ), s [0 Bi)Ims s )~ 270

Taking r = 1 in (32), we will get the (p, q)-analogue of Fox’s H-function defined by
Ahmad et al. [28] as follows:

(@, A1p 1
Hplg (Z; (p, q)l(bj,Bj)lq = me Apy a1 (Aj; By s)mz™5d, gs. (33)

Taking A;=B; =1 in (33), we will get the (p,q)-analogue of Meijer’s G-function
defined by Pathak et al. [39] as follows:
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(31, az, - 'aP)) _ 1 m,n

655 (= 0 Dl o b (L L5 dy s

- HIL Pi.di1;

If p = 1, then the above results of (p, q)-analogue change to well-known results of I-function,
H-function, and G-function [11].

Theorem 6.1 Let z,p € C and Re(s) > 0. Further, let Aj, B, Aj;, Bjj € R™, aj, bj,aj;,bji € C (i=
1,2,...,pi;j=1,2,..,q;), 7 >0 for i=1,2,..,r. The condltlons as given in above for (p,q)-
Aleph function also holds. Then, the 4L, of the X-function exists and the following relation
holds,

L, [ n2origmn 2 (p q)l(aj'Aj)l,n"'[Ti(aji:Aji)]n+1,pi )
P Pravtet | = 22 (by, Bi)1,m + [Ti(0i Bji) lm+1,q;

1 m+1,n

p(p N Piqit1,Tir
[1+P]p q[z]p qP §2p+2

(a]'A)ln [T (a]l' ]1)]n+1p,
( F D, 0)(by,B), [ri(b,-i.Bji)]mH,qi)'

if T, 4 (b; + B;s)is compared with I, ;(p);
= 1 (34)

m+1in
p(p+1) Puqit1LTir
[1+p]p q[z]p qP §2p+2

< (a]'A )ln [‘E (a]l' ]1)]n+1 Pi )

(P, q)| (p, 0)(b;, B) [T Bji) Im+1,q;
if Fp,q(l —a; + a]-s)ls compared with T, ; (p).

Proof. In the proof of (34), we first express the (p, q)-analogue of X-function occurring on the
left hand side of the (34) in terms of Mellin-Barnes contour integral and apply 4L, then we
obtain (say A).

o @y, Ap1n - [Ti@j0 Aji) Inrap;
A= [ n2ptiymn z: (p, ) e PEOE. (—qn?E2)d, n
f Pi.di Tl (p q)l(b,, ))1m [Ti(bjiiji)]m+1.qi p'q( E) b4

oo u2pPt1 _
0 2my o S Ay eir (Aj; By )Mz Ep g (—qu?E)dp gudp

1 —
Zmpr Ap; gyeir (Aj; Bj; $)mz Sf WP TE o (—qu?E?)dp gudp,gs.

By changing variable with »?&? and using (17), we arrive at

A= 1
a P+ .
[1+plpqgl2lpgp 2 &P
1 ]_[J-“;1 qu(b- + Bjs) Hjn=1 [pq(1 — a5 — Ajs)mz T, 4 (p) 4 s
4 . p.q>
2mp LY []_[] 2 m+1 Ipg(1 — bji — Bjis) ]_[]len+1 Ip,q(@ji + Ajis)p g () q(1 — s)smns]
Case 1: we consider I}, 4(b; + B;js) and compare it with T 4(p). Then, we get
A= 1 m+1,n ( (p q)l( ];A )ln [Ti(aji:Aji)]n+1,pi )
- p(p+1) Pi,qi+1,Ti;T ’ 0)(b;,B - [1;(bs;, By A
[1 + p]p,q[z]p,qp 7 EZp+2 (p )( ] ])1,m [Tl( ji )1)]m+1,ql
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Case 2: we consider I}, (1 — aj + a;s) and compare it with T}, 4(p). Then, we get

A=

1 gmn+1 < o )|(1 p'O)(aijj)l,n"'[Ti(aji:Aji)]rHl,pi)
[1+plpql2lpap” 2 B0 P (bj, Bj)1m - [Ti(bji, Bji)Im+1,q; '

By interpreting the Mellin—Barnes counter integral obtained in terms of the (p, q)-analogue of
X-function, we acquire the result (34). Therefore, the proof is completed. i

Theorem 6.2 Let z,p € C and Re(s) > 0. Further, let Aj, Bj, Aj;, Bjj € R, aj, bj,aj;,bji € C (i=
1,2,...,pi;j=1,2,..,qi), 7 >0 for i=1,2,..,r. The cond1t10ns as given in above for (p,q)-
Aleph function also holds. Then, the 4L, of the R-function exists and the following relation
holds,

L [seerinm z( )|( i Ao - [Ti(@50 Aji) Int1,p;
2 P % (P4 B (505 Bl
m+1,n

p(p+1) pi,qit+1,Tir
[1+plpql2lpqa 2 §2p+2

(a]'A)ln [T (ajl' ]1)]n+1p1
( $ D, 0)(by B, [n(b,-i.B,-i)]qui)’

_J if ypq(bj + B; s)ls compared with yp, 4 (p);

(35)

m,n+1
p+1) Np1+1 qi,Tj;T
[1+P]pq[ ]pqq z gzpt2

(a]'A )1n [Tl(a]I' ]1)]n+1 Pi
( (. q)I(P; 0)(b;, B; ) - [Ti(by;, B]’i)]m+1,qi> ’

L ifypq(1 —aj +ays)is compared with yp, 4 (p).

Proof. In the proof of (35), we first express the (p, q)-analogue of X-function occurring on the
left hand side of the (35) in terms of Mellin-Barnes contour integral and apply  4L,, then we
obtain (say 0).

@, AD1n - [Ti@5 A lnsip,
0 = (© 201R % (b, j jir 3 Pi ) o Co2E2)d u
f p‘q”‘r( (P.q )l(b]: Bj)1,m = [Ti(ji, Bji) Im+1,q; pa(=PCE)dpg
00 20+l

=1y 2 o Ju Apiaieir (A By )z e o (—pr?*E?)dp gndp gs
1
= 2my 20 1 Apriaumr (Aj; By s)mz” Sf WP ep o (=pr*E?)dp gndp gs.
By changing variable with »©?£? and using (18), we arrive at

1

0= p(p+1) 2042
[1+plpql2lpqa 2 &%

% 1 H]rrzll Yp,q(bj + Bjs) Hjn=1 Yp,q(1 - aj - AjS)T[Z_SYp,q(p)
2 LYi=1 T [H?zim+1 Yp,q(1 = bji — Bjis) l—11P=in+1 Yp,a(@ji + AjiS)Vp,q()¥pq(1 = S)Sin“S]

dp,gs-

Case 1: we consider yp, 4(b; + B;s) and compare it with y, 4 (p). Then, we get
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0= 1 m+1,n (z- 0 q)l(aj'Aj)l,n < [Ti@@ji, Aj) Ins1,p; )
[1+plpgl2lpad” 2 802 PRI 2 (e, 0) (by, B 1 m -+ [Ti(byi Bjidlm+ 1,0

Case 2: we consider yp, q(1 — aj + ajs) and compare it with yp, 4(p). Then, we get

o 1 mn+1 ( 1-p0)(@,A) 1 [Ti(aji'Aji)]n+1,pi)

. .o Z (D)
[1+plpql2]p qqp(pz+1)zzp+z pirtamr | % (P q)l(bi' Bj)1m * [Ti(bji Bji)Im+1,q;

By interpreting the Mellin—Barnes counter integral obtained in terms of the (p, q)-analogue of
X-function, we acquire the result (35). Therefore, the proof is completed. i

Corollary 6.1 Let Re(€) > 0. Then, we have

(i) if we choose T; = 1 in (34), then we called this the (p, q)-analogue of Laplace-type
integral transform of I-function as follows:

@y AD1n - [@ji Aji) Insp;
L K2p+111'r'1,n” Z; , ) ] 4 ] ) Pi
P4 2( p"q"r< (p q)l(bjrBj)l,m -+ [(bji, Bji) Im+1,q;
1

m+1,n
p(p+1) piditLr
2

EZp+2

[1+ plpql2]pqP

X (Z' (p q)l(a"A]')l;n [(aji’Aji)]n+1,pi )
(P 0) (05, B 1m o+ [0y BjidIms1,q; )
_ ) if Fp,q(b]- + Bjs) is comparedwith [}, 4 (p);
1 mn+1
p+1) pi+1,qir

p(
[1+4plpql2lpgp 2 &2PF2
X (Z; (p, (l)l(1 = P.0)(@j, Ay [(aii'Aji)]nﬂ.Pi),
(b5, B))1,m =+ [(Dji, Bji)Im+1,q;
if Tpq(1— aj+ ajs) is comparedwith I}, 4 (p).

(i1) If we choose 1; = 1,r = 1,p; = P, and q; = Q in (34), then we called this the (p, q)-
analogue of Laplace-type integral transform of H-function as follows:

(a"A')lP
L K2p+1Hm’n 7 (p, Ll P
p.q*-2 ( PQ ( (p q)l(bj, Bj)l,Q

! (@, Aj1p

Hpg+1 (Z' @Dl oy
p(p—+1) P,Q+1 4 ) (p’ 0)(b’ B) )

[1+ p]p,q[z]p,qp 2 g2tz 17 2171,Q

J if T, q(bj + B;s) is comparedwith I, 4 (p);

1 (1 - p! 0)(a'!A')1,P
p(p+1) Hg‘l-iﬂ:*—Ql <Z; (p, Q)|(b B)) " )
[1+plpql2lpqp 2 §20*2 PR

if Fp_q(l —a;+ ais) is comparedwith I, ; (p).

(iii) If we choose t; = 1,r = 1,p; = P,q; = Q, and A; = B; = 1 in (34), then we called this the
(p, q)-analogue of Laplace-type integral transform of G-function as follows:

ISSN 3027-6756 (Online)
Research on Modern science and Utilizing Technological Innovation Journal (RMUTI Journal)

12




RMUTI Journal Vol. 17, No. 2 (May - August 2024) .
> e256530 ‘ -

RMUTI Journal

2p+1cmn [ (ag,az, ...,ap))
pquZ (K GP,Q (Z: (pv q) | (b1’ b2! . bQ)
( 1 gm+in ( (ag,az, ...,ap)

] pa+1 (% @ Dly 0y(by, by, ..., b ))'
[1+plpq[2lpqp 2 E20*2 @

_ ) if l"p,q(bi + Bjs) is comparedwith I}, 4 (p);
1 (s ol O uaz )

p(p+1) P+1,Q \ % (P @)l b4, by, ...,b
[1+4plpq[2lpqp 2 E20*2 (orb2r-rbo)

if T,q(1 —aj + ajs) is comparedwith T, 4 (p).

plp+1) plp+1)

The 4L, is similar to the (i), (i) and (iii), but only changes the p 2~ to q 2

Conclusion

In this work, we introduced the properties of the (p,q)-analogues of Laplace-type integral
transform of the L, and 4L, which consisted of the (p,q)-special functions, (p,q)-
trigonometric types, (p,q)-differential operator, and (p,q)-convolution theorem. Also, we
introduced (p, q)-Aleph function and obtained some interesting results by applying , (L, and
pqliz. In the future study, we see the potential to unlock a novel way to solve some (p,q)
differential equations with all of the results derived through this research.
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