
120 การเปรียบเทียบอัลกอริทึมการบีบอัดแบบไมสูญเสียขอมูลบนเว็บแอปพลิเคชัน

Seksit Podchaman and Jaree Thongkam
ISSN 2672-9369 (Online)

การเปรียบเทียบอัลกอริทึมการบีบอัดแบบไมสูญเสียขอมูลบนเว็บแอปพลิเคชัน
A Comparison of Lossless Data Compression Algorithms on
Web Applications

 เศกสิทธิ์ พจมาร1* และจารี ทองคํา1

 Seksit Podchaman1* and Jaree Thongkam1

Received: January 15, 2020; Revised: April 6, 2020; Accepted: April 22, 2020

บทคัดยอ

งานวิจัยน้ีมีวัตถุประสงคเพ่ือเปรียบเทียบอัลกอริทึมการบีบอัดแบบไมสูญเสียขอมูลเพ่ือลดขนาดไฟลขอมูล
ใหเล็กลงกอนทําการสงไฟลผานเครือขายอินเทอรเน็ต และใชเทคนิคการคลายขอมูลท่ีเคร่ืองผูใช ซ่ึงจะทําให
การสงขอมูลผานเว็บแอปพลิเคชันมีประสิทธิภาพและมีความรวดเร็วเพิ่มขึ้น กลุมไฟลขอมูล 3 กลุมไดถูก
นํามาใชในการทดลองคือ กลุมไฟลเอกสาร กลุมไฟลรูปภาพ และกลุมไฟลมัลติมีเดีย จํานวน 150 ไฟล
โดยใชอัลกอริทึมการบีบอัดแบบไมสูญเสียขอมูลจํานวน 5 อัลกอริทึม ไดแก Huff man Coding, Defl ate,
BZip2, LZMA, และ LZ4 ในการวัดประสิทธิภาพการบีบอัดขอมูล ผูวิจัยไดใชความเร็วในการบีบอัด
ความเร็วในการคลายขอมูล อัตราสวนการบีบอัด และเวลารวมทุกกระบวนการ จากการทดลองพบวา
อัลกอริทึม LZ4 มีประสิทธิภาพในการบีบอัดขอมูล ดวยความเร็วรวมทุกกระบวนการทํางานดีที่สุด
ที่อัตราเฉลี่ย 7.6865 วินาที

คําสําคัญ : การบีบอัดขอมูล; อัลกอริทึมการบีบอัดแบบไมสูญเสียขอมูล; อัลกอริทึม LZ4

1 คณะวิทยาการสารสนเทศ มหาวิทยาลัยมหาสารคาม
1 Faculty of Informatics, Mahasarakham University
* Corresponding Author E - mail Address: runtotree2000@gmail.com

RMUTI JOURNAL Science and Technology Vol. 13, No. 3, September - December 2020 121

https://www.tci-thaijo.org/index.php/rmutijo/index

Abstract

The paper aims to compare diff erent lossless data compression algorithms. These are used to
reduce the size of data before transmitting it over the Internet. Because the data is preserved,
it can be decompressed and restored to its original state. Facilitates fast and effi cient data
transfer in web applications. In this research, a total of 150 fi les of 3 diff erent fi le types are
used including text fi les, image fi les and multimedia fi les. Five lossless data compression
algorithms including Huff man Coding, Defl ate, BZip2, LZMA, and LZ4 are studied and
compared. The compression speed, decompression speed, compression rate and total
processing time are employed to evaluate the algorithms. The results show that LZ4 algorithm
produces the best overall performance, with the average of 7.6865 second.

Keywords: Data Compression; Lossless Data Compression Algorithms; LZ4 Algorithms

บทนํา

ปจจุบันเทคโนโลยีเว็บแอปพลิเคชันไดเขามามีบทบาทตอชีวิตประจําวันมากข้ึน ซ่ึงเปนผลมาจากท่ีเทคโนโลยี
เว็บแอปพลิเคชันไดมีการพัฒนาและเติบโตข้ึนมาอยางรวดเร็ว ทําใหการรับ-สงขอมูลมีปริมาณเพ่ิมข้ึน [1]
สงผลใหเคร่ืองบริการเว็บ (Web Server) มีความเร็วลดลง ไมสามารถใหบริการไดอยางมีประสิทธิภาพ
หรือบางคร้ังก็ไมสามารถเขาใชงานระบบงานได เน่ืองมาจากเคร่ืองบริการเว็บตองใชหนวยความจํา (Memory)
ซีพียู (CPU) พื้นที่เก็บขอมูล (Disk) และแบนดวิดธ (Bandwidth) มากเกินไปทําใหประสิทธิภาพลดลง
ปจจัยหลักอีกประการหน่ึงคือ ปริมาณหรือขนาดของไฟลขอมูลท่ีถูกสงผานเว็บแอปพลิเคชันก็มีผลโดยตรง
ตอความเร็วในการสงขอมูล เม่ือไฟลขอมูลมีขนาดท่ีใหญข้ึนเวลาในการรับ-สงก็ใชเวลามากข้ึนไปดวย [2]
ซึ่งในปจจุบันมีวิธีการตาง ๆ ในการเพิ่มประสิทธิภาพใหกับการรับ-สงขอมูลเพื่อเพิ่มความเร็วในการสง
วิธีหนึ่งที่ถูกนํามาใชในการแกปญหาเรื่องขนาดไฟล คือการบีบอัดไฟลใหมีขนาดเล็กลงกอนสงไฟล
เพ่ือใหมีความเหมาะสมตอการจัดเก็บไฟลขอมูล และการสงขอมูลผานเว็บแอปพลิเคชัน
 การบีบอัดขอมูลเปนท่ีนิยมในปจจุบันซ่ึงมีนักวิจัยหลายทานไดพัฒนาอัลกอริทึม เพ่ือมาใชในการ
บีบอัดขอมูล [3] ไดนําวิธีการบีบอัดขอมูลมาใชในเครือขายเซนเซอรไรสาย (Wireless Sensor Networks:
WSN) เนื่องจากโหนดเซนเซอรใชพลังงานจากแบตเตอร่ีที่มีความจุจํากัด การสงขอมูลเปนกระบวนการ
ท่ีตองใชพลังงานหลักใน WSN จึงมีการนําเทคนิคการประหยัดพลังงานหลาย ๆ รูปแบบมาใช และรูปแบบ
การบีบอัดขอมูลเปนเทคนิคท่ีใชพลังงานอยางมีประสิทธิภาพ ซ่ึงชวยลดปริมาณขอมูลท่ีจะสงในเครือขาย
ทําใหประหยัดพลังงานไดมาก จากการทดลองการนําวิธีการบีบอัดขอมูลมาใชสามารถประหยัดพลังงาน
ไดมากถึง 87.57% [4] ไดวิจัยเร่ืองการบีบอัดแบบไมสูญเสียขอมูล โดยใชการบีบอัดขอมูลในรูปแบบของ
ไฟล JSON สาเหตุมาจากการแลกเปล่ียนขอมูลเดิมในระบบอินเทอรเน็ตในสรรพส่ิง (Internet of Things)
ซ่ึงมีการแลกเปล่ียนขอมูลจากฝงไคลเอ็นตและฝงเซิรฟเวอรเดิมเปนแบบ XML ซ่ึงมีขนาดท่ีใหญ มาเปน
แบบ JSON พรอมกับการบีบอัดขอมูลแบบไมสูญเสียขอมูล จํานวน 4 อัลกอรึทึมดังน้ี LZMA, GZIP,

122 การเปรียบเทียบอัลกอริทึมการบีบอัดแบบไมสูญเสียขอมูลบนเว็บแอปพลิเคชัน

Seksit Podchaman and Jaree Thongkam
ISSN 2672-9369 (Online)

BZIP, และ A-LZMA จากผลการวิจัยอัลกอริทึม BZIP มีประสิทธิภาพที่ดีกวาวิธีอื่น ๆ [5] ไดศึกษา
อัลกอรึทึมเพื่อเปรียบเทียบการบีบอัดรูปภาพจํานวน 71 รูปภาพ และแตละภาพมีความบิดเบือนจาก
ความเปนจริงสูง และทําการเลือกอัลกอรึทึมมาทดสอบจํานวน 6 อัลกอรึทึม ดังนี้ LZMA, PPM, BWT,
LZW, Defl ate, LZ77, และ Defl ate64 จากผลการวิจัยอัลกอรึทึม PPM, LZW และ Defl ate64
ไดผลการบีบอัดที่ดีกวาวิธีอื่น ๆ
 ดังนั้นผูวิจัยจึงไดมีแนวคิดในการแกปญหาเหลานี้ ดวยการนําวิธีการบีบอัดขอมูลมาใชในการ
ลดขนาดของขอมูลใหเล็กลงกอนที่จะสง และในการวิจัยในครั้งน้ีไดมุงเนนการเปรียบเทียบประสิทธิภาพ
การบีบอัดแบบไมสูญเสียขอมูลจํานวน 5 อัลกอริทึม คือ Huff man Coding, LZMA, LZ4, Defl ate,
และ BZip2 โดยการเปรียบเทียบความเร็วในการบีบอัด ความเร็วในการคลายขอมูล อัตราสวนการบีบอัด
และความเร็วในการรับ-สงไฟลขอมูลผานเว็บแอปพลิเคชัน เพ่ือนําผลการเปรียบเทียบท่ีดีและมีประสิทธิภาพ
ไปพัฒนาปรับปรุงระบบเว็บแอปพลิเคชันในหนวยงานหรือองคกรตอไป

วิธีดําเนินการวิจัย

งานวิจัยน้ีดําเนินการวิจัยโดยมีวัตถุประสงค เพ่ือเปรียบเทียบประสิทธิภาพอัลกอริทึมบีบอัดแบบไมสูญเสีย
ขอมูลที่เหมาะสมกับหมวดไฟลเอกสาร หมวดไฟลรูปภาพ และหมวดไฟลมัลติมีเดีย โดยวิธีการดําเนิน
งานวิจัยในคร้ังนี้ ไดแบงขั้นตอนการทํางานออกเปน 3 ขั้นตอน คือ 1) การเก็บรวบรวมไฟลขอมูลและ
จัดแยกไฟลตามหมวดหมูไฟล 2) การบีบอัดขอมูล/คลายขอมูล และการรับ-สงขอมูล 3) การประเมิน
ประสิทธิภาพการทํางาน ซึ่งสามารถอธิบายรายละเอียดในแตละขั้นตอน ไดดังนี้

รูปที่ 1 ขั้นตอนการทํางาน

 1. การเก็บรวบรวมไฟลขอมูลและจัดแยกไฟลขอมูลตามหมวดหมูไฟล ในการวิจัยครั้งนี้ผูวิจัย
ไดทําการรวบรวมไฟลขอมูลจํานวน 150 ไฟลขอมูล และจัดแยกไฟลตามหมวดหมูไฟล เพ่ือตองการทดสอบ
ประสิทธิภาพแตละอัลกอริทึมใหมีความเหมาะสมกับหมวดหมูไฟล เน่ืองจากไฟลขอมูลในปจจุบันมีมากมาย
หลายประเภท ผูวิจัยจึงไดทําการจัดแยกกลุมไฟลขอมูลเพื่อรวบรวมไฟลที่มีการใชงานอยางแพรหลาย
ในปจจุบันใหเปนหมวดหมู และเพ่ือนําผลการทดสอบในแตละหมวดหมู ไปปรับปรุงพัฒนาระบบการบีบอัด
ขอมูลไดอยางมีประสิทธิภาพ ดวยการแบงหมวดหมูไฟล จํานวน 3 หมวดหมู คือ 1) หมวดไฟลเอกสาร

RMUTI JOURNAL Science and Technology Vol. 13, No. 3, September - December 2020 123

https://www.tci-thaijo.org/index.php/rmutijo/index

จํานวน 60 ไฟลขอมูล ประกอบไปดวยนามสกุลไฟล (PDF, BAK, XLS, XLSX, LOG, TXT, DOC,
DOCX) 2) หมวดไฟลรูปภาพจํานวน 48 ไฟลขอมูล ประกอบไปดวยนามสกุลไฟล (JPG, GIF, TIF,
TIFF, PNG, BMP, PSD) 3) หมวดไฟลมัลติมีเดียจํานวน 42 ไฟลขอมูล ประกอบไปดวยนามสกุลไฟล
(MP3, WAV, AVI, MP4, 3GP, WMA) และทําการแบงชวงขนาดไฟล 15 ชวงขนาดไฟล ซ่ึงไฟลท่ีจะใช
ในการทดลองการบีบอัดขอมูล จะมีขนาดไฟลตั้งแต 1 กิโลไบต - 100 เมกะไบตขึ้นไป
 2. การบีบอัดขอมูล/คลายขอมูล และการรับ-สงขอมูล การบีบอัดขอมูล (Data Compression)
เปนการบีบอัด (Compress) เพื่อใหใชจํานวนบิตในการจัดเก็บขอมูลนอยลงกวาเดิม การบีบอัดขอมูล
มีประโยชนในการลดปริมาณการใชทรัพยากร เชน ประหยัดพื้นที่ของฮารดดิสกเมื่อจัดเก็บ เปนตน
ในทางตรงขามขอมูลที่ถูกบีบอัด (Compress) มาแลวก็ตองนํามาคลาย (Decompress) หรือถอดรหัส
เพ่ือใหไดขอมูลเดิมกลับมากอนท่ีจะสามารถนําไปใชงานได วิธีการบีบอัดขอมูล แบงออกเปน 2 ประเภทไดแก
 - การบีบอัดแบบไมสูญเสีย (Lossless Data Compression) เปนการบีบอัดขอมูลแบบ
ไมสูญเสีย อาศัยหลักการที่วาปกติขอมูลที่ใชอยูมักจะมีขอมูลที่ซํ้ากันอาจใชวิธีเก็บตําแหนงที่ปรากฎ
คํานั้น ๆ แทน ก็จะสามารถลดความยาวขอมูลที่จะเก็บได จะเห็นวาการบีบอัดขอมูลแบบน้ีขอมูลตนฉบับ
กับขอมลูที่บีบอัดแลวคลายออกมาจะเหมือนกันไมผิดเพี้ยน
 - การบีบอัดแบบสูญเสียบางสวน (Lossy Data Compression) จะมีแนวคิดตางกันไป
โดยใชหลักการวาความผิดเพี้ยนของขอมูลเล็กนอยเปนสิ่งที่ยอมรับได เชน ตาของมนุษยไมสามารถแยก
ความแตกตางของบางสีไดหมด ก็ไมจําเปนตองเก็บขอมูลทุกสี จะเห็นตัวอยางจากไฟลประเภท JPG
ใชการบีบอัดขอมูลแบบเสียบางสวน จะทําใหไดขนาดไฟลภาพท่ีเล็กลงมาก แตก็สูญเสียรายละเอียดบางอยางไป
 ในขั้นตอนการบีบอัดและคลายขอมูลในครั้งนี้ จะใชอัลกอริทึมการบีบอัดไมสูญเสียขอมูล
จํานวน 5 อัลกอริทึม ดังนี้
 1) อัลกอริทึม Huff man Codes [6] คือการเขารหัสแบบ Huff man เปนการใชรหัสท่ีส้ันกวา
แทนสัญลักษณท่ีเกิดข้ึนบอย โดยจะใชตนไมสองทางในการสรางรหัสของสัญลักษณแตละตัวกระจายไปกับ
ขอมูลของโหนดใบที่เชื่อมอยูกับตนไมสองทาง (Binary Tree) แตละโหนดจะมีนํ้าหนักกําหนดอยูซึ่งก็คือ
ความถ่ีหรือความนาจะเปนของการปรากฎของสัญลักษณน้ัน ๆ โดยมีวิธีการสรางตนไมดังน้ี 1) กําหนดให
ทุก ๆ สัญลักษณเปนโหนดใด ๆ 2) หา 2 โหนดใด ๆ ที่มีนํ้าหนักนอยที่สุด 3) สรางโหนดแมสําหรับ
โหนดสองโหนดน้ีโดยมีน้ําหนักเทากับผลรวมของน้ําหนักของโหนดลูก 4) กําหนดใหโหนดแมน้ีเปนโหนดใด ๆ
และนําโหนดลูกออกจากโหนดใด ๆ 5) โหนดลูกโหนดหนึ่งจะถูกกําหนดใหมีทางผานจากโหนดแม
เมื่อทําการถอดรหัสดวยบิต 0 และอีกโหนดจะถูกกําหนดดวยบิต 1 จนกวาจะเหลือโหนดใด ๆ หนึ่งโหนด
ซึ่งโหนดนี้จะถูกกําหนดใหเปนรากของตนไมนั้นหมายถึง การสรางตนไมเสร็จสิ้น
 อัลกอริทึม Huff man Codes เปนอัลกอริทึมท่ีสามารถบีบอัดขอมูลไฟลท่ีเปน ASCII ได
รวดเร็วมาก และประสิทธิภาพในการบีบอัดน้ันไดผลดีเน่ืองจากเราสามารถทราบ Symbol ท้ังหมดท่ีเปนไปได
(A-Z, a-z, 0-9) ทําใหไมตองมีการคนหา Symbol เหมือนกับอัลกอริทึมอ่ืน ๆ แตอัลกอริทึมน้ีไมเหมาะกับ
การบีบอัดไฟลขนาดเล็ก เน่ืองจากอาจทําใหไฟลท่ีบีบอัดมีขนาดไฟลหลังจากการบีบอัดมีขนาดพ้ืนท่ีเพ่ิมข้ึน
 2) อัลกอริทึม BZip2 [7] คืออัลกอริทึมการบีบอัดขอมูลโดยใชวิธีการเบอรโรวส-วีเลอร
(Burrows-Wheeler) และการเขารหัสแบบ Huff man โดยปกติการบีบอัดขอมูลแบบน้ีจะดีกวาการบีบอัด
ขอมูลแบบ LZ77/LZ78 และมีประสิทธิภาพใกลเคียงแบบ PPM ของการบีบอัดขอมูลโดยใชสถิติ

124 การเปรียบเทียบอัลกอริทึมการบีบอัดแบบไมสูญเสียขอมูลบนเว็บแอปพลิเคชัน

Seksit Podchaman and Jaree Thongkam
ISSN 2672-9369 (Online)

แตเร็วกวาทางดานเวลา อัลกอริทึม BZip2 จะประมวลผลขอมูลโดยแบงขอมูลออกเปนชวงบล็อกขนาด
100,000 - 900,000 ไบต ข้ึนอยูกับคําส่ังปกติขนาดของบล็อกจะเทากับ 900,000 ไบต จากน้ันจะอานขอมูล
คร้ังละ 5,000 ไบตจนกวาจะครบเทากับขนาดของบล็อกท่ีกําหนด และประมวลผลบีบอัดขอมูลและเขียนขอมูล
ท่ีบีบอัดแลวลงบนหนวยเก็บขอมูล ทําเชนน้ีตอไปเร่ือย ๆ จนกวาบล็อกขอมูลจะถูกบีบอัดขอมูลแลวท้ังหมด
 อัลกอริทึมบี BZip2 เปนอัลกอริทึมบีบอัดขอมูลโดยใชหลักสถิติเขามาใชในการจัดเก็บขอมูล
จึงสงผลใหการบีบอัดมีอัตราสวนการบีบอัดขอมูลที่ดี แตมีปญหาในการใชเวลาในการทํางานมากขึ้น
ทั้งในการบีบอัดและการคลายขอมูล
 3) อัลกอริทึม Defl ate [8] คืออัลกอริทึมท่ีทําการรวมกันของอัลกอริทึม LZ77 และการเขารหัส
Huff man อัลกอริทึม Defl ate จะตัดสตริงออกเปนบล็อกยอย ๆ บล็อกละ 32 กิโลไบต โดยแตละบล็อกน้ัน
จะใชพ้ืนท่ี 4 ไบตในการเก็บระยะทาง (Distance Code) โดยเปนระยะทางท่ีจะถูกแทนท่ี และสามารถเก็บ
Symbol ที่จะถูกแทนท่ีได 288 Symbols โดยมีหลักการทํางานคือ จะตัดขอมูลออกเปนบล็อกยอย ๆ
บล็อกละ 32 กิโลไบตกอน จากน้ันแตละบล็อกจะใชอัลกอริทึม LZ77 ในการหาบล็อกยอย ๆ ท่ีมีบิตซ้ํากัน
ในลักษณะท่ีเรียกวา Sliding Window แลวทําการสรางตารางข้ึนมาเพ่ือเก็บ Symbol และหลังจากน้ัน
จะสรางตาราง Distance Code เพื่อเก็บระยะทางที่จะเขาไปแทนที่ Symbol ที่ระบุไวในตัวขอมูล
 อัลกอริทึม Defl ate นี้ไดผลดีมากในการบีบอัดขอมูลที่เปนลักษณะไบนารี เชน
ซอฟตแวรตาง ๆ แตอัลกอริทึมนี้ไมเหมาะกับการบีบอัดไฟลขนาดเล็กและไฟลเอกสาร เนื่องจากทํางาน
ไดชาและตองเสียพ้ืนที่ในการสราง Header ตาง ๆ ใน แตละบล็อกมากกวาอัลกอริทึมอื่น ๆ
 4) อัลกอริทึม LZ4 [8] คืออัลกอริทึมท่ีอยูในตระกูล LZ77 ใชในการบีบอัดขอมูลซ่ึงมุงเนน
ที่ความเร็วของการบีบอัดขอมูลและถอดรหัสขอมูล คนหาคาที่ซํ้าซอนกัน โดยอาศัย Hash Table และ
ไมคนหาความเปนไปไดทั้งหมดของคาที่ซํ้าซอนกัน และทําการบีบอัดกับขอมูลในระดับไบต
 ขอมูลท่ีถูกบีบอัด (Compression Block) ของ LZ4 น้ันประกอบดวย Sequence หลาย ๆ
Sequence เรียงตอกัน ในแตละ Sequence นั้น คือชุดของ Literals ซึ่งเปนสวนที่ไมถูกบีบอัดหรือ
ขอมูลท่ีไมซ้ํา ตามดวยสวนท่ีใชในการคัดลอก Match (สวนท่ีระบุถึงการซ้ําของขอมูล) ในแตละ Sequence
จะเร่ิมตนดวย Token ซ่ึงมีขนาด 1 ไบต ซ่ึงใน 1 ไบตน้ีจะแยกออกมาเปน 2 ฟลด ซ่ึงแตละฟลดมีขนาด 4 บิต
และมีคาอยูระหวาง 0 - 15 คาใน Token นั้นจะใชสําหรับระบุความยาวและสวนประกอบตาง ๆ ใน
Sequence นั้น โดย 4 บิตแรก (High-Bits) นั้นจะบอกถึงความยาวของ Literal และ 4 บิตหลัง
(Low-Bits) นั้นจะบอกถึงความยาวของ Match ซึ่งความยาวของ Literal และ Match นั้น ถาหากวา
เกินกวา 15 จะมีสวน Literal Length เพิ่มขึ้นมา เพื่อเก็บคาความยาวของ Literal โดยแตละไบต
จะเก็บคาได 255 เมื่อ Literal Length มีความยาวมากข้ึน ก็สามารถเพ่ิมขนาดของ Literal Length ได
โดยไมไดจํากัดขนาดไว (No Size Limit) จาก Literals คือ Operation ที่ใชในการคัดลอก Match
ซึ่งเร่ิมจาก Off set ซึ่งมีขนาด 2 ไบต แบบ Little Endian (ไบตแรกคือ Low ไบตที่ 2 คือ High) ระบุ
ถึงตําแหนงของ Match ที่ถูกกอบปมาจาก Literals ซึ่ง 1 หมายถึงตําแหนงปจจุบัน ลบ 1 Byte และ
คาสูงสุดของ Off set คือ 65535 ในการคํานวณความยาวของ Match จะใชฟลดที่สองของ Token
ซ่ึงเปน 4 บิตหลัง (Low-Bits) โดยความยาวท่ีนอยท่ีสุดของ Match เทากับ 4 ไบต เรียกวา Min Match
ดังน้ันคา 0 จึงหมายถึง 4 ไบต และ 15 หมายถึง 19+ ไบต ซึ่งสามารถขยายใหมากขึ้นไดเชนเดียวกัน
กับ Literal Decoder สามารถสรางขอมูลตนฉบับดวยขอมูลจาก Off set และความยาวของ Match

RMUTI JOURNAL Science and Technology Vol. 13, No. 3, September - December 2020 125

https://www.tci-thaijo.org/index.php/rmutijo/index

 อัลกอริทึม LZ4 มีความเร็วในการบีบอัด 500 เมกะไบตตอวินาทีตอคอร และสามารถ
ปรับความเร็วเพิ่มไดถึงกิกะบิตตอวินาที ในโหมดการทํางานของซีพียูที่มีหลายคอร และมีความเร็วใน
การแปลงขอมูลกลับนั้นสามารถเร็วไดถึงความเร็วของแรมท่ีมีในเครื่อง
 5) อัลกอริทึม LZMA [7] คืออัลกอริทึมการบีบอัดแบบพจนานุกรมอยูในตระกูล LZ77
ซ่ึงผลลัพธจะถูกเขารหัสดวยตัวเขารหัสแบบเปนชวง โดยใชแบบจําลองท่ีซับซอนเพ่ือทํานายความนาจะเปน
ของแตละบิต ตัวบีบอัดพจนานุกรมพบการจับคูโดยใชโครงสรางขอมูลพจนานุกรมท่ีซับซอน และสรางสัญลักษณ
การอางอิงวลีซ่ึงถูกเขารหัสคร้ังละหน่ึงบิต ในการบีบอัด LZMA สตรีมท่ีถูกบีบอัดเปนสตรีมของบิตเขารหัส
โดยใช Coder Range แบบปรับตัวได สตรีมจะถูกแบงออกเปนแพ็กเก็ต แตละแพ็กเก็ตจะมีขนาดหน่ึงไบต
แตละสวนของแตละแพ็กเก็ตถูกจําลองดวยบริบทท่ีตางกัน ดังน้ันการทํานายความนาจะเปนสําหรับแตละบิตน้ัน
ก็จะมีความสัมพันธกับคาของบิตนั้น ๆ
 อัลกอริทึม LZMA มีอัตราการบีบอัดท่ีดีกวาอัลกอริทึม Bzip2 โดยเฉพาะการบีบอัดไฟล
ที่เปนประเภทขอความธรรมดา (Plain Text) แตขอเสียของอัลกอริทึมนี้คือตองการทรัพยากรเคร่ืองมาก
ทั้งหนวยประมวลผลกลาง (CPU) และหนวยความจําหลัก (RAM)
 สําหรับขั้นตอนในการทํางานสามารถอธิบายรายละเอียด ไดดังน้ี
 2.1 การบีบอัดขอมูล เปนข้ันตอนเร่ิมตนจากผูใชงานทําการเลือกไฟลท่ีตองการอัปโหลด เม่ือไฟล
ถูกอัปโหลดเขามาจัดเก็บท่ีเคร่ืองบริการเว็บเสร็จเรียบรอย จากน้ันจะทําการประมวลผลการบีบอัดขอมูลตาม
อัลกอริทึมที่ผูใชงานตองการ เมื่อการประมวลผลการบีบอัดเสร็จสิ้น ไฟลขอมูลจะถูกบันทึกจัดเก็บ
โดยนามสกุลไฟลขอมูลจะตอทายดวยอัลกอริทึมที่ทําการบีบอัดเขามาดวยทุกไฟลขอมูล ในขั้นตอน
การบีบอดัขอมูล (Compression) จะประมวลผลการทํางานท่ีเครื่องบริการเว็บ โดยเครื่องมือที่นํามาใช
ในการทดสอบประสิทธิภาพการทํางานในข้ันตอนนี้ มีคุณสมบัติดังน้ี
 - ฮารดแวร เคร่ืองคอมพิวเตอร Notebook ประกอบไปดวย ซีพียู Intel Core i5-2410M
@ 2.30 GHz หนวยความจําหลัก 8 GB ฮารดดิสกขนาด 500 GB
 - ซอฟตแวร ระบบปฏิบัติการ Windows 10 Professional 64 Bit, Visual Studio.Net
2019, พัฒนาดวยภาษา ASP.NET Core MVC, Internet Information Services (IIS) 7.5, Browser
Chrome Version 14
 2.2 การคลายขอมูล เปนข้ันตอนในการคลายขอมูลท่ีมีการบีบอัดมาแลว โดยเร่ิมตนการทํางาน
หลังจากโปรแกรมดาวนโหลดไฟล จากเคร่ืองบริการเว็บลงมาจัดเก็บท่ีเคร่ืองผูใชงานกอน จากน้ันโปรแกรม
ทําการคลายการบีบอัดขอมูล โดยการตรวจสอบนามสกุลไฟลกอน เน่ืองจากนามสกุลไฟลเอกสารท่ีทําการ
บีบอัดขอมูลมาแลวจะบงบอกชนิดของอัลกอริทึมท่ีใชในการบีบอัด เม่ือบีบอัดดวยอัลกอริทึมใด ๆ ตองทําการ
คลายการบีบอัดดวยอัลกอริทึมน้ัน ๆ เสมอ ในข้ันตอนการคลายขอมูลจะประมวลผลการทํางานท่ีเคร่ือง
ผูใชงาน (Client) การประมวลผลการทํางานท่ีเคร่ืองผูใชงานจะทําใหมีประสิทธิภาพมากกวาการประมวล
ผลการทํางานท่ีเคร่ืองบริการเว็บ เน่ืองจากในกรณีท่ีมีผูใชงานจํานวนมากตองการดาวนโหลดไฟลเอกสาร
ไปใชงานพรอม ๆ กัน สงผลใหเคร่ืองบริการเว็บตองประมวลผลขอมูลในหลาย ๆ ข้ันตอน ซ่ึงอาจจะสงผลให
ประสิทธิภาพการทํางานลดลง ดังน้ันในการวิจัยคร้ังน้ีจึงไดเลือกใชเทคนิคในการคลายขอมูลท่ีเคร่ืองผูใชงาน
เพราะจะทําใหการทํางานของเคร่ืองบริการเว็บ มีประสิทธิภาพมากยิ่งข้ึน โดยเครื่องมือที่นํามาใชในการ
ทดสอบประสิทธิภาพการทํางานในข้ันตอนนี้มีคุณสมบัติดังนี้

126 การเปรียบเทียบอัลกอริทึมการบีบอัดแบบไมสูญเสียขอมูลบนเว็บแอปพลิเคชัน

Seksit Podchaman and Jaree Thongkam
ISSN 2672-9369 (Online)

 - ฮารดแวร เคร่ืองคอมพิวเตอร Notebook ประกอบไปดวย ซีพียู Intel Core i3-2410M
@ 2.30 GHz หนวยความจําหลัก 4 GB ฮารดดิสกขนาด 500 GB
 - ซอฟตแวร ระบบปฏิบัติการ Windows 10 Professional 32 Bit โปรแกรมสําหรับ
โหลดไฟลและการคลายขอมูล (API) พัฒนาดวย Visual Studio.Net 2019 ดวยภาษา C#, Browser
Chrome Version 14
 2.3 การรับ-สงไฟลขอมูลผานเว็บแอปพลิเคชัน เปนข้ันตอนในการถายโอนขอมูลจากเคร่ืองบริการ
เว็บไปยังเคร่ืองผูใชงาน ในการถายโอนขอมูลจะออกแบบโปรแกรมเปน Web Client โดยสามารถแสดง
รายละเอียดขั้นตอนการทํางานได ดังรูปที่ 2

รูปที่ 2 ขั้นตอนการรับ-สงไฟลขอมูลผานเว็บแอปพลิเคชัน

 จากรูปที่ 2 แสดงขั้นตอนในการถายโอนขอมูลจากเว็บแอปพลิเคชันไปที่เครื่องผูใชงาน
โดยเริ่มตนการทํางานจากผูใชงานทําการคลิกเลือกไฟลขอมูลที่ตองการดาวนโหลด จากรายการไฟล
ที่แสดงบนเว็บแอปพลิเคชัน จากนั้นโปรแกรมจะทําการสงคาพารามิเตอร (URL) ใหกับโปรแกรม
ดาวนโหลดไฟลเอกสาร (API) เมื่อโปรแกรมทําการดาวนโหลดไฟลจากเครื่องบริการเว็บลงมาจัดเก็บ
ที่เครื่องผูใชงานเสร็จเรียบรอย โปรแกรมจะทําการคลายการบีบอัดขอมูล และบันทึกจัดเก็บไฟลขอมูล
ที่เครื่องผูใชงาน
 3. การประเมินประสิทธิภาพการทํางาน สําหรับงานวิจัยนี้ไดทําการแบงแยกข้ันตอนการทํางาน
ออกเปน 2 กระบวนการ คือ 1) กระบวนการอัปโหลดไฟลและบีบอัดขอมูล และวัดประสิทธิภาพการบีบอัด
2) กระบวนการดาวนโหลดไฟล การคลายขอมูล และการรับ-สงไฟลผานเว็บแอปพลิเคชัน และวัดประสิทธิภาพ
การทํางาน
 ในวิจัยฉบับนี้จะวัดประสิทธิภาพการทํางานจํานวน 4 ตัวชี้วัด ดังน้ี
 3.1 การวัดความเร็วการบีบอัดขอมูล (Compression Speed) [9] - [10] คือการวัด
ความเร็วในการบีบอัดขอมูลซึ่งเปนอัตราสวนระหวางปริมาณขอมูลและเวลาท่ีใชในการบีบอัดขอมูล
มีหนวยเปนไบตตอวินาทีดังสมการท่ี (1)

 Compression Speed = (1)
File Size

Compression Time

RMUTI JOURNAL Science and Technology Vol. 13, No. 3, September - December 2020 127

https://www.tci-thaijo.org/index.php/rmutijo/index

 - File Size คือ ขนาดขอมูลกอนการบีบอัด มีหนวยเปนไบต
 - Compression Time คือ เวลาที่ใชในการบีบอัดขอมูล มีหนวยเปนวินาที
 3.2 การวัดความเร็วการคลายขอมูล (Decompression Speed) [11] - [12] คือการวัด
ความเร็วในการคลายขอมูล ซ่ึงเปนอัตราสวนระหวางปริมาณขอมูลและเวลาท่ีใชในการคลายขอมูลมีหนวย
เปนไบตตอวินาที ดังสมการท่ี (2)

 Decompression Speed = (2)

 - File Size1 คือ ขนาดขอมูลหลังการบีบอัด มีหนวยเปนไบต
 - Decompression Time คือ เวลาที่ใชในการคลายขอมูล มีหนวยเปนวินาที
 3.3 การวัดอัตราสวนการบีบอัดขอมูล (Compression Ratio) [13] ซึ่งแสดงถึงจํานวน
ขอมูลที่เหลือหลังจากการบีบอัด ความสัมพันธดังกลาวจะอยูในรูปของรอยละขนาดของขอมูลดั้งเดิม
(File Size2) และขนาดของขอมูลที่ถูกบีบอัดแลว (Compression Size) ดังสมการท่ี (3)

 Compression Ratio = *100 (3)

 3.4 เวลารวมทุกกระบวนการ (Overall Time) [6], [14] คือเวลารวมของระบบท่ีใชใน
การสงขอมูลจากเครื่องตนทางไปยังเครื่องปลายทาง ดังสมการท่ี (4)

 Overall Times = (Compression Time + Processing Time) +
 (Decompression Time + Transmission Time) (4)

 - Processing Time คือ เวลาที่เครื่องบริการเว็บใชในการประมวลผล
 - Transmission Time คือ เวลาท่ีใชในการสงขอมูลจากเคร่ืองตนทางไปยังปลายทาง

ผลการวิจัย

จากการออกแบบและพัฒนาเว็บแอปพลิเคชันและทดสอบวัดประสิทธิภาพการบีบอัดขอมูล โดยใชไฟลขอมูล
ในการทดสอบทั้งหมด 150 ไฟลขอมูล และจัดแยกไฟลตามหมวดหมูไฟล ดังนี้ 1) หมวดไฟลเอกสาร
จํานวน 60 ไฟลขอมูล 2) หมวดไฟลรูปภาพจํานวน 48 ไฟลขอมูล 3) หมวดไฟลมัลติมีเดียจํานวน 42 ไฟลขอมูล
จากน้ันทําการทดสอบเพื่อวัดประสิทธิภาพการทํางาน ดวยการวัดความเร็วในการบีบอัด ความเร็วในการ
คลายขอมูล อัตราสวนการบีบอัด และเวลารวมการทํางานทุกกระบวนการ โดยสามารถแสดงผล
การทดสอบไดดังนี้
 1. ผลการเปรียบเทียบความเร็วการบีบอัด (Compression Speed)
 เปนการวัดหาความเร็วท่ีใชในการบีบอัดขอมูล จากเร่ิมตนจนส้ินสุดการบีบอัดขอมูล ซ่ึงผลลัพธ
ที่ไดจะมีหนวยเปนไบตตอวินาที โดยสามารถแสดงผลการทดสอบไดดังตารางท่ี 1

File Size1
Compression Time

Compression Size
File Size2

128 การเปรียบเทียบอัลกอริทึมการบีบอัดแบบไมสูญเสียขอมูลบนเว็บแอปพลิเคชัน

Seksit Podchaman and Jaree Thongkam
ISSN 2672-9369 (Online)

ตารางที่ 1 ความเร็วการบีบอัดขอมูล

 อัลกอรึทึม ความเร็วการบีบอัดขอมูล (Byte / S)
 Multimedia Images Data คาเฉลี่ยรวม
 LZ4 133,034,743.74 65,835,663.25 42,744,585.52 80,538,330.84
 Defl ate 23,073,507.59 32,384,160.89 20,504,606.93 25,320,758.47
 Huff man Coding 2,371,039.79 2,303,321.63 2,120,797.02 2,265,052.81
 BZip2 1,023,002.04 1,608,261.90 1,408,694.51 1,346,652.82
 LZMA 830,718.02 840,928.95 783,964.60 818,537.19

 จากตารางท่ี 1 แสดงผลลัพธการวัดความเร็วในการบีบอัดไฟลขอมูล จากผลการทดลองพบวา
อัลกอริทึม LZ4 สามารถทําความเร็วในการบีบอัดขอมูลดีท่ีสุดท่ีความเร็วเฉล่ีย 80,538,330.84 ไบตตอวินาที
และยังพบวาอัลกอริทึม LZ4 สามารถทําความเร็วไดดีทั้ง 3 หมวดหมูไฟล โดยหมวดไฟลมัลติมีเดีย
มีความเร็วเฉล่ีย 133,034,743.74 ไบตตอวินาที หมวดไฟลเอกสารความเร็วเฉล่ีย 65,835,663.25 ไบตตอวินาที
หมวดไฟลรูปภาพความเร็วเฉล่ีย 42,744,585.52 ไบตตอวินาที จะเห็นไดวา อัลกอริทึม LZ4 มีความเร็ว
ในการบีบอัดท่ีสูงกวาอัลกอริทึมอ่ืน ๆ เปนอยางมาก โดยมีคาเฉล่ียมากกวาอัลกอริทึม Defl ate ท่ีมีลําดับถัดมา
ที่ความเร็วเฉลี่ย 25,320,758.47 ไบตตอวินาที
 2. ผลการเปรียบเทียบความเร็วการคลายขอมูล (Decompression Speed)
 เปนการวัดหาความเร็วท่ีใชในการคลายขอมูล จากเร่ิมตนจนส้ินสุดการคลายขอมูล ซ่ึงผลลัพธ
ที่ไดจะมีหนวยเปนไบตตอวินาที โดยสามารถแสดงผลการทดลองไดดังตารางท่ี 2

ตารางที่ 2 ความเร็วการคลายขอมูล

 อัลกอรึทึม ความเร็วการคลายขอมูล (Byte / S)
 Multimedia Images Data คาเฉลี่ยรวม
 LZ4 763,951,843.31 104,543,522.90 297,746,985.22 388,747,450.48
 Defl ate 162,223,009.27 51,296,907.76 87,952,600.45 100,490,839.16
 BZip2 3,541,681.15 1,291,306.45 2,569,048.82 2,467,345.47
 LZMA 3,022,228.02 1,607,089.16 2,382,631.09 2,337,316.09
 Huff man Coding 161,432.40 83,929.44 90,452.61 111,938.15

 จากตารางที่ 2 แสดงผลลัพธการวัดความเร็วในการคลายขอมูล จากผลการทดลองพบวา
อัลกอริทึม LZ4 สามารถทําความเร็วในการคลายขอมูลดีท่ีสุดท่ีความเร็วเฉล่ีย 388,747,450.48 ไบตตอวินาที
และยังพบวาอัลกอริทึม LZ4 สามารถทําความเร็วไดดีทั้ง 3 หมวดหมูไฟล โดยหมวดไฟลมัลติมีเดีย
มีความเร็วเฉล่ีย 763,951,843.31 ไบตตอวินาที หมวดไฟลเอกสารความเร็วเฉล่ีย 297,746,985.22 ไบตตอวินาที
หมวดไฟลรูปภาพความเร็วเฉล่ีย 104,543,522.90 ไบตตอวินาที และจากผลการทดลองในตารางท่ี 1 และ 2
จะเห็นไดวา อัลกอริทมึ LZ4 จะมีความเร็วในการบีบอัดและคลายขอมูลดีที่สุด จากผลการทดลอง

RMUTI JOURNAL Science and Technology Vol. 13, No. 3, September - December 2020 129

https://www.tci-thaijo.org/index.php/rmutijo/index

ความเร็วในการคลายขอมูล อัลกอริทึม LZ4 มีคาเฉลี่ยมากกวาอัลกอริทึม Defl ate ที่มีลําดับถัดมา
ที่ความเร็วเฉลี่ย 100,490,839.16 ไบตตอวินาที เนื่องจากอัลกอริทึม LZ4 มีความเร็วในการบีบอัดและ
คลายขอมูลที่สูง ยิ่งไฟลที่มีขนาดใหญตั้งแต 10 เมกะไบตขึ้นไป การทํางานของอัลกอริทึมก็จะมี
ความรวดเร็วมากยิ่งขึ้น อีกทั้งเครื่องที่ใชในการทดลองมีซีพียูที่เปนแบบมัลติคอร อัลกอริทึม LZ4
สามารถทําความเร็วไดอีกเทาตัว จึงสงผลทําใหผลการทดลองพบวา อัลกอริทึม LZ4 มีความเร็วเฉล่ียท่ีดีท่ีสุด
ท้ังในดานการบีบอัดและการคลายขอมูล จากผลลัพธในการวัดความเร็วในการบีบอัดและการคลายขอมูล
มีความสอดคลองกับผลการวิจัยเรื่อง A Critical Evaluation of Lossless Algorithm and Its
Applications [15] ซึ่งไดทําการทดสอบเปรียบเทียบการบีบอัดแบบไมสูญเสียขอมูล โดยการใชงาน
การบีบอัดขอมูลในระบบงานซึ่งมีการแลกเปลี่ยนขอมูลกันผานโทรศัพทมือถือ ซึ่งไดผลลัพธเชนเดียวกับ
บทความวิจัยฉบับนี้
 3. ผลการเปรียบเทียบอัตราสวนการบีบอัดขอมูล (Compression Ratio)
 เปนการวัดหาอัตราสวนพ้ืนท่ีขนาดไฟลคงเหลือหลังจากผานข้ันตอนการบีบอัดไฟลขอมูลมาแลว
ซึ่งผลลัพธการเปรียบเทียบอัตราสวนการบีบอัดไฟลขอมูลท่ีไดจะมีหนวยเปนรอยละของขนาดไฟล
ขอมูลดังเดิม โดยสามารถสรุปผลการทดลองไดดังตารางที่ 3

ตารางที่ 3 อัตราสวนการบีบอัดขอมูล

 อัลกอรึทึม อัตราสวนการบีบอัดขอมูล (%)
 Data Images Multimedia คาเฉลี่ยรวม
 LZMA 73.05 71.03 94.72 79.60
 BZip2 76.47 76.51 94.82 82.60
 Defl ate 76.21 77.20 96.81 83.41
 LZ4 80.01 85.99 98.77 88.26
 Huff man Coding 111.43 109.10 98.65 106.39

 จากตารางท่ี 3 แสดงขอมูลอัตราสวนการบีบอัดขอมูล ผลการทดลองเปรียบเทียบอัตราสวน
การบีบอัดขอมูลระหวางอัลกอริทึม LZMA, BZip2, Defl ate, LZ4, และ Huff man Coding พบวา
อัลกอริทึม LZMA มีอัตราสวนการบีบอัดที่นอยที่สุดใน 3 หมวดไฟล โดยเฉลี่ย 79.60% อัลกอริทึม
BZip2 โดยเฉลี่ย 82.60% อัลกอริทึม Defl ate โดยเฉลี่ย 83.41% อัลกอริทึม LZ4 โดยเฉล่ีย 88.26%
และอัลกอริทึม Huff man Coding โดยเฉล่ีย 106.39% และพบวาหมวดไฟลท่ีมีอัตราสวนการบีบอัดท่ีนอยท่ีสุด
คือ หมวดไฟลรูปภาพโดยมีคาเฉล่ีย 71.03% ซ่ึงหมายความวาเม่ือนําไฟลเอกสารใด ๆ มาผานกระบวนการ
บีบอัดขอมูลจะทําใหมีขนาดที่เล็กลง ยิ่งมีอัตราสวนการบีบอัดที่นอยก็จะทําใหขนาดไฟลเล็กลงไปเรื่อย ๆ
ดังนั้นหากพิจารณาในดานการลดขนาดของไฟล อัลกอริทึม LZMA จึงมีประสิทธิภาพดีที่สุด
จากผลการทดลองยังพบวาอัลกอริทึม Huff man Coding มีอัตราสวนการบีบอัดท่ีมีคามากท่ีสุดโดยคาเฉล่ีย
106.39 % ทั้งในหมวดไฟลขอมูล หมวดไฟลรูปภาพ และหมวดไฟลมัลติมีเดีย และเมื่อไฟลมีขนาดใหญ
ถาทําการบีบอัดไฟลจะพบวาขนาดไฟลหลังจากบีบอัดจะมีขนาดท่ีใหญข้ึนกวาไฟลตนฉบับ หรือขนาดไฟลลดลง

130 การเปรียบเทียบอัลกอริทึมการบีบอัดแบบไมสูญเสียขอมูลบนเว็บแอปพลิเคชัน

Seksit Podchaman and Jaree Thongkam
ISSN 2672-9369 (Online)

แตไมมากนัก เพราะฉะน้ันอัลกอริทึม Huff man Coding จึงไมควรนํามาบีบอัดขอมูลท่ีเนนลดขนาดไฟล
จากผลลัพธในการวัดอัตราสวนการบีบอัดขอมูลมีความสอดคลองกับผลการวิจัยเรื่อง The Application
of LZMA Algorithm in ISCS Based on Pretreatment [4] ซึ่งไดนําการบีบอัดแบบไมสูญเสียขอมูล
โดยใชการบีบอัดขอมูลในระบบ IoT (Internet of Things) ซึ่งมีการแลกเปล่ียนขอมูลจากฝงไคลเอ็นต
และฝงเซิรฟเวอรของการขนสงทางรถไฟเดิมเปนแบบ XML มาเปน JSON ซึ่งไดผลลัพธเชนเดียวกับ
บทความวิจัยฉบับนี้

ตารางที่ 4 อัตราสวนการบีบอัดขอมูลแยกตามชวงขนาดไฟลขอมูล

 ชวงขนาดไฟล อัตราสวนการบีบอัดขอมูล (%)
 LZMA BZip2 Defl ate LZ4 Huff man Coding

 1 - 5 KB 60.09 102.31 60.86 69.53 379.54
 5 - 10 KB 74.03 81.35 74.21 79.42 124.56
 10 - 50 KB 48.05 53.49 49.87 53.26 78.21
 50 - 200 KB 76.73 79.76 77.75 80.30 97.37
 200 - 500 KB 79.74 82.01 81.65 84.17 95.40
 500 - 800 KB 95.06 96.37 95.77 96.90 100.23
 800 - 1000 KB 76.94 78.37 80.47 84.46 94.43
 1 - 5 MB 70.31 71.71 73.92 77.92 89.35
 5 - 10 MB 75.86 79.83 82.16 86.79 91.82
 10 - 50 MB 85.14 85.56 88.00 92.02 97.26
 50 - 60 MB 89.37 88.83 92.65 98.13 98.65
 60 - 70 MB 83.28 83.22 90.29 97.85 98.32
 70 - 80 MB 89.81 85.39 91.65 98.28 98.25
 80 - 100 MB 79.91 80.73 86.57 91.98 93.53
 100 MB ขึ้นไป 83.61 83.47 89.55 97.42 98.17
 คาเฉลี่ยรวม 77.86 82.16 81.02 85.90 115.67

 จากผลการทดลองในตารางท่ี 4 แสดงอัตราสวนการบีบอัดขอมูลโดยทําการแบงแยกตามขนาด
ชวงไฟล 15 ชวงไฟล พบวาไฟลขนาด 1 กิโลไบต - 50 เมกะไบต อัลกอริทึม LZMA มีการบีบอัดขอมูล
ไดมากกวาอัลกอริทึมอ่ืน ๆ อัลกอริทึม LZMA สามารถบีบอัดไฟลขอมูลที่มีเนื้อหาเปนขอความธรรมดา
(Plain Text) ไดดี โดยไฟลที่ใชในการทดลองมีเนื้อหาใกลเคียงกัน จึงทําใหการบีบอัดดวยอัลกอริทึม
LZMA จึงมีขนาดเล็กท่ีสุด เม่ือขนาดของไฟลมีขนาดมากกวา 50 เมกะไบต กลับพบวาอัลกอริทึม BZip2
มีการบีบอัดขอมูลไดมากกวาอัลกอริทึมอ่ืน ๆ แตเม่ือดูคาเฉล่ียรวมท่ีมีอัตราสวนการบีบอัดดีท่ีสุด เปนอัลกอริทึม
LZMA ท่ีมีคาเฉล่ียรวมดีท่ีสุดท่ี 77.86%

RMUTI JOURNAL Science and Technology Vol. 13, No. 3, September - December 2020 131

https://www.tci-thaijo.org/index.php/rmutijo/index

 4. ผลการเปรียบเทียบประสิทธิภาพเวลารวมทุกกระบวนการ (Overall Time)
 การวัดเวลารวมทุกกระบวนการทํางาน (Overall Time) โดยจะวัดประสิทธิภาพการทํางาน
ตั้งแตเริ่มตนการบีบอัดขอมูล การรับ-สงขอมูลสงผานเว็บแอปพลิเคชัน จนถึงข้ันตอนการคลายขอมูล

รูปที่ 3 ความเร็วรวมทุกกระบวนการเร่ิมบีบอัดขอมูลจนถึงกระบวนการคลายขอมูล

 จากผลการทดลองในรูปที่ 3 พบวา อัลกอริทึม LZ4 มีคาเฉลี่ย Overall Time นอยที่สุด
โดยมีคาเฉลี่ย 7.6865 วินาที และพบวามีคาเฉล่ียที่ตํ่าในหมวดไฟลขอมูลโดยเฉล่ีย 1.5360 วินาที และ
หมวดไฟลมัลติมีเดียโดยเฉล่ีย 3.0337 วินาที แตพบวาในหมวดไฟลรูปภาพ อัลกอริทึมท่ีมีคาเฉล่ียท่ีนอยท่ีสุด
คือ อัลกอริทึม Defl ate โดยเฉลี่ย 13.8792 วินาที เมื่อดูคา Overall Time โดยเฉลี่ยรวมทั้งหมด
กลับพบวา อัลกอริทึม LZ4 มีคาเฉล่ีย Overall Time นอยท่ีสุด ทําใหการสงขอมูลผานเว็บแอปพลิเคชัน
มีประสิทธิภาพและมีความเร็วเพ่ิมข้ึน จากตารางท่ี 3 จะพบวาอัลกอริทึม LZMA จะมีอัตราสวนการบีบอัด
ท่ีดีท่ีสุด แตเม่ือเทียบประสิทธิภาพรวมทุกกระบวนการ อัลกอริทึม LZMA ยังเปนรองอัลกอริทึม LZ4 อยูมาก
จากรูปที่ 3 จะพบวาอัตราสวนเฉลี่ยคา Overall Time อัลกอริทึม LZ4 จะมีคาเฉลี่ยนอยกวา อัลกอริทึม
LZMA โดยเฉลี่ย 63.4977 วินาที จากผลลัพธในการทดสอบยังมีความสอดคลองกับผลการวิจัยเรื่อง
Data Compression Device Based on Modifi ed LZ4 Algorithm [13] ซึ่งไดนําการบีบอัดขอมูล
มาใชการเพ่ิมประสิทธิภาพการจัดเก็บและอายุการใชงานใน Solid State Drive (SSD) ทําใหมีอัตราการอาน
เขียนขอมูลมีประสิทธิภาพมากข้ึน ซึ่งไดผลลัพธเชนเดียวกับบทความวิจัยฉบับนี้

การอภิปรายผล

งานวิจัยน้ีมีวัตถุประสงคเพ่ือเปรียบเทียบอัลกอริทึมการบีบอัดแบบไมสูญเสียขอมูลเพ่ือลดขนาดไฟลขอมูล
ใหเล็กลงกอนทําการสงไฟลผานเครือขายอินเทอรเน็ต โดยใชอัลกอริทึมการบีบอัดจํานวน 5 อัลกอริทึม
ไดแก Huff man Coding, Defl ate, BZip2, LZMA, และ LZ4 จะเห็นไดวาอัลกอริทึม Huff man
Coding มีรูปแบบการบีบอัดเปนการนําตัวอักษรมาไลเรียงเปนแบบตนไม (Binary Tree) เมื่อไฟลมี
ขนาดที่คอนขางใหญ เวลาท่ีใชก็จะเพิ่มข้ึนอยางมาก จึงทําใหมีความเร็วลดลง อัลกอริทึม BZip2 และ

132 การเปรียบเทียบอัลกอริทึมการบีบอัดแบบไมสูญเสียขอมูลบนเว็บแอปพลิเคชัน

Seksit Podchaman and Jaree Thongkam
ISSN 2672-9369 (Online)

LZMA เปนอัลกอริทึมที่ถูกพัฒนามาจากอัลกอริทึม LZ77 ซึ่งมีรูปแบบเปนการระบุสัญลักษณที่ซํ้ากัน
แทนดวยชุดตัวอักษรที่เปนสัญลักษณและตัวเลข ทําใหพื้นที่ในการจัดเก็บหลังการบีบอัดมีขนาดที่เล็กลง
จึงทําใหอัลกอริทึม LZMA และ BZip2 มีอัตราสวนในการบีบอัดท่ีดีท่ีสุดตามลําดับ ย่ิงชุดขอมูลมีเน้ือหา
ท่ีใกลเคียงกันอัตราสวนการบีบอัดก็จะสูงตามไปดวย อัลกอริทึม Defl ate เปนอัลกอริทึมท่ีรวมการทํางาน
ของอัลกอริทึม Huff man Coding กับอัลกอริทึม LZ77 โดยมีขนาดบล็อกในการจัดเก็บขอมูลเพิ่มขึ้น
จึงทําใหมีความเร็วในการบีบอัดและคลายขอมูลที่เร็วกวาอัลกอริทึม Huff man Coding, BZip2, และ
LZMA แตพบวาอัตราสวนการบีบอัดยังเปนรองอัลกอริทึม LZMA และ BZip2 อัลกอรึม LZ4
เปนอัลกอริทึมท่ีมุงเนนความเร็วของการบีบอัดและถอดรหัสขอมูล โดยการคนหาคําท่ีมีเน้ือหาซ้ําซอนกัน
และจะใช Hash Table เขามาชวยในการจัดเก็บและคนหาขอมูล ทําใหมีความรวดเร็วกวารูปแบบตนไม
สงผลใหอัลกอริทึม LZ4 มีความเร็วในการบีบอัด และความเร็วในการคลายขอมูลไดดีที่สุด

สรุปผลการทดลอง

จากการทดลองเมื่อพิจารณาจาก Compression Ratio, Compression Time, Decompress Time, และ
Overall Time พบวาการใชการบีบอัดขอมูลโดยใชอัลกอริทึมแบบ LZ4 ไดผลลัพธที่ดีในดานความเร็ว
ในการบีบอัด ความเร็วในการคลายขอมูล และความเร็วรวมทุกกระบวนการที่มีความเร็วทั้งในหมวดไฟล
เอกสาร ไฟลรูปภาพ และไฟลมัลติมีเดีย จึงเหมาะสําหรับการนํามาใชในการบีบอัดขอมูลและรับ-สงขอมูล
ผานเว็บแอปพลิเคชัน อัลกอริทึม Huff man Coding ไมควรนํามาพิจารณาในการบีบอัดขอมูล
จากผลการทดลองพบวาประสิทธิภาพในดานความเร็วของการบีบอัดและการคลายขอมูลใชเวลานาน และ
เม่ือไฟลมีขนาดใหญต้ังแต 10 เมกะไบตข้ึนไป เวลาท่ีใชในการบีบอัดและคลายขอมูลก็จะมากกวาอัลกอริทึม
อ่ืน ๆ อยางมาก ถาหากพิจารณาอัลกอริทึมบีบอัดขอมูลท่ีเนนเร่ืองการลดขนาดพ้ืนท่ีการจัดเก็บไฟล พ้ืนท่ี
ในการสํารองไฟล อัลกอริทึม LZMA จะเหมาะสมกับวิธีการนี้เปนที่สุด

References

[1] Silawong, C. and Anusasamornkul, T. (2013). A Comparative Study of Compression Algorithms
 for Each Data Type. In 2013 International Computer Science and Engineering Conference
 (ICSEC 2013). pp. 435-440
[2] Pranveenit, S. and Chanchio, K. (2016). The Performance Analysis of Compression Techniques
 for Thread-Based Live Migration of Virtual Machine. In ICMSIT 2016: International
 Conference on Management Science, Innovation, and Technology. Faculty of Management
 Science, Suan Sunandha Rajabhat University. pp. 103-114
[3] Uthayakumar, J., Vengattaraman, T., and Dhavachelvan, P. (2019). A New Lossless Neighborhood
 Indexing Sequence (NIS) Algorithm for Data Compression in Wireless Sensor Networks.
 Ad Hoc Networks. Vol. 83, pp. 149-157. DOI: 10.1016/j.adhoc.2018.09.009

RMUTI JOURNAL Science and Technology Vol. 13, No. 3, September - December 2020 133

https://www.tci-thaijo.org/index.php/rmutijo/index

[4] Xudong, X. and Yiran, L. (2018). The Application of LZMA Algorithm in ISCS Based on
 Pretreatment. In 2018 5th International Conference on Systems and Informatics (ICSAI).
 pp. 521-525. DOI: 10.1109/ICSAI.2018.8599491
[5] Uthayakumar, J. and Vengattaraman, T. (2018). Performance Evaluation of Lossless Compression
 Techniques: An Application of Satellite Images. In 2018 Second International Conference on
 Electronics, Communication and Aerospace Technology (ICECA). pp. 750-754. DOI:
 10.1109/ICECA.2018.8474759
[6] Arshad, R., Saleem, A., and Khan, D. (2016). Performance Comparison of Huff man Coding
 and Double Huff man Coding. In 2016 Sixth International Conference on Innovative
 Computing Technology (INTECH). pp. 361-364. DOI: 10.1109/INTECH.2016.7845058
[7] Tariq, Z. B., Arshad, N., and Nabeel, M. (2015). Enhanced LZMA and BZIP2 for Improved
 Energy Data Compression. In 2015 International Conference on Smart Cities and Green ICT
 Systems (SMARTGREENS). pp. 1-8. DOI:10.5220/0005454202560263
[8] Harnik, D., Khaitzin, E., Sotnikov, D., and Taharlev, S. (2014). A Fast Implementation of
 Defl ate. Data Compression Conference. pp. 223-232. DOI:10.1109/DCC.2014.66
[9] Lan, C., Xu, J., Wenjun, Z., and Wu, F. (2015). Compound Image Compression Using Lossless
 and Lossy LZMA in HEVC. In 2015 IEEE International Conference on Multimedia and
 Expo (ICME). pp. 1-6. DOI: 10.1109/ICME.2015.7177430
[10] Zhou, B., Jin, H., and Zheng, R. (2014). A High Speed Lossless Compression Algorithm Based
 on CPU and GPU Hybrid Platform. In 2014 IEEE 13th International Conference on Trust,
 Security and Privacy in Computing and Communications. pp. 693-698. DOI: 10.1109/
 TrustCom.2014.90
[11] Zhu, W., Xu, J., Ding, W., Shi, Y., and Yin, B. (2013). Adaptive LZMA-Based Coding for Screen
 Content. In 2013 Picture Coding Symposium (PCS). pp. 373-376. DOI: 10.1109/PCS.2013.6737761
[12] Sundaresan, M. and Devika, E. (2012). Image Compression Using H.264 and Defl ate Algorithm.
 In International Conference on Pattern Recognition, Informatics and Medical Engineering
 (PRIME-2012). pp. 242-245. DOI: 10.1109/ICPRIME.2012.6208351
[13 Liu, W., Mei, F., Wang, C., O’Neill, M., and Swartzlander, E. E. (2018). Data Compression
 Device Based on Modifi ed LZ4 Algorithm. IEEE Transactions on Consumer Electronics.
 Vol. 64, Issue 1, pp. 110-117. DOI: 10.1109/TCE.2018.2810480
[14] Li, H., Tuo, X., Shen, T., Henderson, M. J., Courtois, J., and Yan, M. (2017). An Improved
 Lossless Group Compression Algorithm for Seismic Data in SEG-Y and MiniSEED File Formats.
 Computers & Geosciences. Vol. 100, pp. 41-45. DOI: 10.1016/ j.cageo.2016.11.017
[15] Preet, S. and Bagga, A. (2018). Lempel-Ziv-Oberhumer: A Critical Evaluation of Lossless
 Algorithm and Its Applications. In 2018 4th International Conference on Computing Sciences
 (ICCS). pp.175-182. DOI:10.1109/ICCS.2018.00036

