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Abstract

This work introduces a modified MAX-MIN Ant System (MMAS) algorithm to solve the Vehicle
Routing problem (VRP), in which customers of known demand are supplied from a single depot.
Vehicle Routing Problem is an NP-complete optimization problem and has usually been solved to
nearly optimum by heuristics. The objective of VRP is to use a fleet of vehicles with specified
capacity to serve a number of customers with dissimilar demands at minimum cost, without violating
the capacity and route length constraints. Many meta-heuristic approaches like Simulated
Annealing (SA), Genetic Algorithm (GA), Tabu Search (TS) and An Improved Ant Colony System
(IACS) algorithm. In this research, we proposed a Max-Min Ant System algorithm with local
search approaches. Experiments on various aspects of 14 problem benchmark problems are other
meta-heuristic and show that our results are competitive.

Keywords : Vehicle routing problem, Combinatorial optimization, Meta-heuristic, Ant Colony
Optimization, Max-Min Ant System

1. Introduction

The basic vehicle routing problem (VRP)
consists of a number customers, each requiring a
specified demand of goods to be delivered. Vehicles
dispatched from a single depot must deliver the
goods required, and then return to the depot. Each
vehicle can carry a limited demand and may also
be restricted in the total distances its can travel.
Only one vehicle is allowed to visit each customer.
The problem is to find a set of delivery routes
satisfying these requirements and giving minimal
total cost. The VRP is a well-known NP-hard
problem (Gambardella, L. M., et al. 1999) that is

very difficult to solve to optimality. Exact methods
like Dynamic Programming and Branch and
Bound cannot obtain the optimal solution for large
VRP within reasonable time, thus, many
researchers have used heuristic approaches to solve
the VRP. Many meta-heuristic approaches
developed according to artificial intelligence,
biological evolution and/or physics phenomenon
have been reported and applied to the VRP, such
as Simulated Annealing (SA) (Alfa, A. S., et al,
1991) Genetic Algorithms (GA) (Baker, B. M. and
M., 2003) A., Tabu Search (TS) (Gendreau, M.,
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(Gambardella, L., 1999). Among these meta-
heuristic approaches, Ant System (AS) is a new
distributed meta-heuristic first introduced by
Coloni et al. (1991). The AS is based on the
behavior of real ants searching for food. Real ants
communicate with each other using an aromatic
essence, called pheromone, which they laid down
on the path they traversed. The pheromone will
accumulates when more and more ants pass
through the same path. Nevertheless, the
pheromone will evaporate if no ants continue to
pass. The selection of the pheromone trail reflects
the length of the paths as well as the quality of the
food source found. Dorigo et al. (1997a) reported
the AS to solve traveling salesman problem (TSP),
quadratic assignment problem (QAP) and job-shop
scheduling. Dorigo and Gambardella Dorigo et al.
(1997a) developed the ant colony system (ACS)
to improve the performance of AS. Bullnheimer et
al. (1999a) were the first researchers that used AS
to solve the VRP. They presented a hybrid Ant
System algorithm (HAS) that added the 2-opt
heuristic and then based on saving algorithm to
construct routes. However, the results of HAS were
not as well as other meta-heuristic approaches.
Then, Bullnheimer et al. (1999a) developed an
improved AS (IAS) for the VRP. They applied the
idea of candidate lists (Dorigo, M. and L. M.
Gambardella, 1997a) to construct vehicle routes.
Candidate lists can concentrate the search on
promising nodes thus saving computational effort
that can be better used for further iterations. Results
of a set of standard problems showed that IAS was
significantly better than AS and outperformed SA
and Neural Network. Gambardella et al. (1999a)
defined a hybrid Ant System algorithm for the VRP,
which was inspired by ACS. Results obtained by
HAS-VRP were competitive with those of the best-
known algorithms and new upper bounds had been
found for well-known problem instances. In this
research, the main idea of our approach is to the
transfer the sequential approach and parallel
approach using a MMAS. We propose the heuristic
to assign customers to each depot and constructing
vehicle routes simultaneously. They are organized
as follows. The model is formulated in section

2. In section 3 the MMAS and a solution
improvement are presented. Computational
experiments are discussed in section 4 and finally
conclusion is provided in section 5.

2. Vehicle Rouing Problem

The vehicle routing problem is a very
complicated combinatorial optimization problem
that has been worked on since the late fifties,
because of its central meaning in distribution
management. The vehicle routing problem can be
described as follows Gambardella, L. M., et al
(1999) n customers must be served from a depot.
Each customer asks v for a quantity g; of goods.
A fleet of vehicles, each vehicle with a capacity Q,
is available to deliver goods. A service time #; is
associated with each customer. It represents the
time required to service him/her. Therefore, a VRP
solution is a collection of tours. The VRP can be
modeled in mathematical terms through a complete
weighted digraph G = (VA), where V = {0,1..,n},
is a set of nodes representing the depot (0) and the
customers {0,1..,n) and A = {(i;j)|i, JE V } is a set
of arcs, each one with a minimum travel time tij
associated. The quantity of goods q; requested by
each customer i (i >0) is associated with the
corresponding vertex with a label. Labels Q,..,0,
corresponding to vehicles capacities are finally
associated with vertex O (the depot). A typical
mathematical formulation for the single depot VRP
is provided below:

Minimize: ZZZU ()
Subject to ZZX -1 Vi€ {ln N} )
ZZX -1 Y€l N} @)
Z:x;,ix; —o e (s Mok e K} (g)
Yo Xx<o k€ (L K} 5)
Z\:Z\:’.,K‘, <D Vhe ... K} ©)
2; <1 vk ell,...K} (7)
DA vke{l,....K} )
x: €{0.1} vije{l.Nhkel ..k} (9)

The object function of distance
minimization is expressed by Eq. (1). Constraints
Eq. (2),(3) route continuity is enforce by (4) as once
a vehicle arrived at a node, it must also leave that
node. No vehicle can service customer demands
that exceed the vehicle capacity in Eq. (5). A
maximum route length is limited by Eq. (6). Eq.(7)
and (8) ensures that each vehicle is scheduled no
more than once and the last one is binary variable.
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3. Appling Max-Min Ant System to The
Vehicle Routing Program

In this research, we present MAX-MIN Ant
System (MMAS) that it developed by Stutzle,
T. & Hoos (1993). Our algorithm achieves a strong
exploitation of the search history by allowing only
the best solutions to add pheromone during the
pheromone trial update. Also, the use of a rather
simple mechanism for limiting the strengths of the
pheromone trails effectively avoids premature
convergence of the search. MMAS can easily be
extended by adding local search algorithms. MAX-
MIN Ant System, which has been specifically
developed to meet these requirements, differs in
tree key aspects from AS.

a) To exploit the best solutions found
during iteration or during the run of the algorithm,
after iteration only one single ant adds pheromone.
This ant may be the one which found the best
solution in the current iteration, iteration best ant,
or the one which found the best solution from the
beginning of the trial, global best ant

b) To avoid stagnation of the search the
range of possible trials on each solution component
is limited to an interval. [T _,7_ .

c¢) We initialize the pheromone trials to
T_ . achieving in this way a higher exploration of
solution at start of the algorithm.

3.1 The Proposed Heuristic Method

In our research, we applying MMAS for
VRP include three steps are described as follows:
The first steps, requires that a colony of ants is
activated to find the shortest route by the procedure
finds a feasible solution by an algorithm based on
nearest neighbor and determine the initialized a
number of vehicles (n ), capable to cope with all
emand. (n ). To simply determine by the total
demand divided into vehicle capacity. We used the
amount of ant colonies equal to the number of
vehicles plus one (n + 1)to construct routes
according to Eq (10)

numberofvehicle (n ) =  Total demand of customers

maximum load of vehicle
(10)
The second, an ant constructs routes using
as multi colonies. In every generation, each ant k
constructs one feasible solution by starting at the
depot and successively choosing a next node or
customer from the set of feasible nodes. An ant
works can be analyzing each node with respect to
the constraints imposed by the model, each ant
builds list of feasible movements and chooses the
one indicated by the probabilistic rule in Eq. (14).
Finally, after an ant has constructed its solution,
we apply a local search to improve the solution
quality. In particular, we apply 2-Opt and Or-Opt
by exchanging a customer of route with a customer
of another route.

Algorithm 1: MMAS-VRP algorithm

/*Main Procedure */

b
?t?\;) I1. /* Initialization *//* a)g is the best current solution,

is the number of nodes of the graph,
L

NN is the total travel time of the tour obtained by nearest neighbor,

ng,, is the total travel time of the best tour found */ Initialize variables Initialize a)g

Start nearest neighbor r

Step 2. /* Main Loop */ 0

<—]/(N‘ZO) 7

. — *
< Tl Where: Tin = max /2% | N |

Repeat: For each ant & Call Route Construction Procedure()

@ , L are current solution and current travel distances */

b
If(#visited_customer( @ ) > #visited_customers( (og ) or (#visited_customer( (og W

- gb k gb
=#visited_customer( @~ )and L < L " Then o
g

b
If(#visited_customer( {ug )=0) Then
Step 3. /* Local Search */
Local Search() End
Eise Local Search()

k
= Endif End for

@

Step 4. /* Global pheromone updating */

ii

If( 1, j )is an edge in the current best solution Then = (- p)r,./. + pAr,.j

-1
Where: Arij « (L " ) Else Ty = a- p)rij

End if o®

i

Fig 1. MMMAS algorithm
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3.2 Parameters and Intialize the
Pheromone Trails Phases

In our research, the initial pheromone level
of each edge is evaluated by Eq. (11). The
pheromone level of each edge has lower (7, ) and
upper limits (7 ) and initial pheromone () were
set as in Eq.(12)

T, < 1(N*Z,) (11)
To < Thax (12)
While [T ,T_ /2% | Nland N is the number

of nodes. MMAS activated the pheromone
level is set equal to 7, on each edge where
T < VIN*Z,) Z is length of the solution
found with the nearest neighbor algorithm. MMAS
imposes explicit limits T and t__ on the
minimum and maximum pheromone trails after
iteration one has to ensure that the pheromone trails
the limits. The maximum pheromone trails (7, )
is set to an estimate of the maximum value. To
determine reason able values for _ , we use the
following assumptions, T, ®,T < T, ®<T,.
After iteration one has to ensure that the pheromone
trails respects to the limits. If we have T, o>,
we set T, (1 =7 and if, T, <z, ,weset T, )
=t__. Also note that by enforcing we set 7, >0
and if n,; < ® for all solution components, the
probability of choosing a specific solution
component is 0.

*"‘.
New route

; X
New route

Route index+1

g

State transition rule

Feasible point?

Fig 2. Sequential route construction

3.3 Routes Contructions Phases

For constructing phases, we used the
amount of ant colonies equal to the number of
vehicles plus one (n, + 1) to construct routes. It is
an extension of the algorithm in Dang and Anulark,
(2000) for ant colony construct routes in two
frameworks between sequential and parallel
constructions. These algorithms are illustrated in
Figs. 2 and 3, respectively.

The sequential route construction, a route
for a vehicle is constructed one at a time. When
either the number of constructed routes or the total
capacity a vehicle spent has reached the maximum
number allowed a new route is initiated. The
sequential construction phase ends if all gather
points have been assigned to vehicles. On the other
hand, in the parallel route construction illustrated
in Fig 4. the first route of the parallel method is
constructed for every vehicle at the same time.
However, each tour must be not violated conditions
of any routes or vehicles.

The parallel construction terminates when
there is no more demand left. For an ant
construction routes, after we know the number of
multi-colonies and set them to positions on each
vehicle. The multi colonies construct vehicles
routes by alternating motion of each ant from each
depot. An ant selects the next customer to be
served, compatible with capacity constraints. Each
ant is put at a depot and each ant will choose next
nodes to move from the present node to i the next

( Initial )

i
<

Y

New route

Route index+1

\a

State transition rule New route

Unrouted point? Feasible point?

Fig 3. Parallel route construction



= ~a o o a
219 17 4N, 2 U TN 2 21U 1 ungAN - Ui 43

node j according to the state transition rule given
by (13).

5 (”][%]

.91_:‘;[1] = if je .’\r
gl

Where «, /3 are two parameters which
determine the relative importance of the
pheromone trails and the heuristic information and
N* are the set of nodes that remain to be visited by
an ant positioned on node i, T, (t) is pheromone
level on edges (i.j), n, is the inverse of the length
of edges (i,j) Thus n,= l/dij,where dij is denoted
the distance between nodes i and nodes j.
In principle of MMAS algorithm can be applied to
solve the VRP by defining solution components
which the ants use to iteratively construct candidate
solutions and on which they may deposit
pheromone.

The artificial ants construct vehicle routes
by successively choosing cities to visit, until each
city has been visited. Whenever the choice of
another city would lead to an infeasible solution
for reasons of vehicle capacity or total route length,
the depot is chosen and a new tour is started. At
each step, every ant k computes a set of feasible
expansions to its current partial solution and selects
one of these probabilistically, according to a
probability distribution specified.

maintaining solution feasibility. In this phase, we
employ three local search procedures, namely
Move-Exchanges, Or-opt and 2-opt algorithm
which have been popular among exchange
techniques proposed for solving VRP (Taillard
et al., 1993, Potvin and Rousseau., 1995) The
Overall improvement procedure of local search in
MMAS is as follows Fig 5-7.

Type I. Move-Exchange modification

@ A8 ~O——0—
P AT
) ﬂ i) L= (520 T
@y - e @) = @)
i 1Y AN ©
rD»G— O O

Fig 5. Move-Exchange algorithm

The Move-Exchanges operator aims at
improving the solution by exchanging a customer
i with a customer j by tire to eject a customer i
from its current position and insert it at another
position.

Type II. 2-opt algorithm

MOLOLOLO ---*

0 0O

Fig 6. 2-opt algorithm

Algorithm 2: k-th ant route construction

/* k-th ant route construction */ Initialize @

Repeat 1./* Definition of compatible customers */ For each not visited node j

if total distances from route < max allowed route & capacity constriants is satisfied

Then is compatible 7 = %,.j End if End for If there are compatible customers fhen

k
2. /* State transition rule */ Exploration Eq(14) insert j in@ Endif

Until no compatible customers are found

Fig 4. k-th ant route construction

3.4 Routes Improvement Phases

After an ant has constructed its solution, we
apply a local search algorithm to improve the
solution quality.The route improvement procedure
starts from an initial solution obtained from the
route construction phase and attempts to and a
better neighboring solution in terms of the number
of vehicles and total route length spent, while

The edge-exchange neighborhoods for a
single route are set of route that can be obtained
from an initial route by replacing a set of k of its
edges by another set of k edges. Such replacements
are called k-exchanges. 2-exchanges or 2-opt is
illustrated in Fig 6.
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Type I11. Or-opt algorithm

"""I\/?.}I;'II/:L/‘_)—(\J\}-HKr\- { \l—-r JW—-—I'/; \; ————— >

ARN *,_/____'\_:___ _______ S \( )

Fig. 7. Or-opt algorithm

The basic idea, suppose we want to move a
string S of consecutive nodes immediately
proceeding, respectively following Fig 7. Let / and
t be the nodes immediately p For the further
research, we will improve local search to obtain
better solutions.Very large scale neighborhood
search algorithm will also be studied to solve
MDVRP receding, respectively following, S in the
original route, let i and j be the nodes between
whom s is to be inserted and let m and k be the first
and the last nodes of S. Then:

MoveCost = d (L,t) +d (k+j) + d (i+m)-d (L,m)-
d(kt)-dij ) (14)

3.5 Update of Pheromone Trails

The MMAS to update pheromone trails
includes iteration-best and global-best solutions to
avoid search stagnation. The allowed range of the
pheromone trails strength is limited to the interval
[rmax‘rmin ], that T, ist < T,<T.- The pheromone
trails are initialized to the upper trail limits. After
all ants have constructed solutions, the pheromone

7+ (- pyry 0+ ATge 1Y

Where p a parameter is called evaporation
coefficient, 0 < p< 1 and A 7' = 1/C*" where
tis scheduled for the frequency and C**is the best
so far tour. The ant which is allowed to add
pheromone trails may construct iteration-best tour
and global-best tour. All edges (i,j) belonging to
the so far best solution (objective value) are
considered to increase the intensity of pheromone
trails by an amount A r’”j;. If an edge (i, j) does not
belong to the so far best solution, the intensity of
pheromone will be reduced.

4. Number Analysis

In this section we will present numerical
results for our new approach and compare them
with results from previous literature as well as
different meta-heuristics.

4.1 The Vehicle Routing Problem
Instances

Table 1 contains the data for the 14 vehicle
routing problem instances (Gambardella, L. M.
et al., 1999). These problems contain between 50
and 199 customers as well as the depot.

4.2 Experment with MMAS

In this section we experimentally study the
effectiveness of the influence of difference values
of the parameters. To determine the appropriate

trails are updated according to (15). values of parameters f, a, p and **, which

Table 1 : Vehicle routing problem instances
NO N Q s/T BKS Reference Method
C1 50 160 0/ 524.61 Taillard(1993) TS
C2 75 140 0/ 835.26 Taillard(1993) TS
C3 100 200 0/ 826.14 Taillard(1993) TS
C4 150 200 0/ 1028.42 Taillard(1993) TS
C5 199 200 0/ 1291.45 Rochat and Taillard(1995) TS
Cé 50 160 10/200 555.43 Taillard(1993) TS
Cc7 75 140 10/160 909.68 Taillard(1993) TS
C8 100 200 10/230 865.94 Taillard(1993) TS
Cc9 150 200 10/200 1162.55 Taillard(1993) TS
C10 199 200 10/200 1395.85 Rochat and Taillard(1995) TS
C11 120 200 0/ 1042.11 Taillard(1993) TS
C12 100 200 0/ 819.56 Taillard(1993) TS
C13 120 200 50/720 1541.14 Taillard(1993) TS
C14 100 200 90/1040 866.37 Taillard(1993) TS

N= number of nodes; Q=capacity of vehicle; s/T=route length constraints
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determines the convergence speed of MMAS
towards a good solution. We present curves for the
trade-off between the best solutions is found versus
serial and parallel method on routes building for
C1 instances by using difference setting of p is
varies between 0.7 and 0.98, as shown in Fig 8.

In Fig 8§, it can be observed that the best
tours are found when we using parallel method
more than serial method and for a low number of
iterations, better tours are found when using high
values of p. This is due to the fact that for high p
the pheromone trails on arcs which are reinforced
decrease faster, and hence, the search concentrates
earlier around the best tours seen so far. If p is
low, too few iterations are performed to search
marked differences between the pheromone trials
on arcs contained in high quality solution and those
which are not part of the best solutions.

Tullweiice of ihe pow mneters

L]
ean {1

Therefore, these parameters have a good
performance at values around a =1, f§ = 2,
p = 0.98 and the number of maximum iteration is
n and solve 5 times for each problem, which are
set for all experiments of this study.

4.3 Computation Experiment

MMAS have been coded in the visual C++
and experiments were run on a Pentium IV, 256
MB of RAM, 3.07 GHz processor. In order to asses
the relative performances of MMAS with local
search independently from details of the settings,
we used o =1, f =2, p=0.98. For all problems
maximum iteration times are and n solve 5 times
for each problem.

In Table 2 We show the overall of the
experiment was compared the effect between serial
and parallel method for conducted the best

Influence of the paraneters

{ 640
a0 L
ez il £20, ——Rho=070
= K=t - 60D \ Rho=0.30
an — K. H H \ —— Rho=0.90
g T‘-. R Hhasl 5 £ 50 \ L\
[ Iy e 2 N Rho=0.95
N LN \
= 380 | — — Ria4. 75 A 560 - —_ — Rho=0.98
\ — R —\ -
an | S - 540 “, —Rhe=032
—"\-\——H\_'}\—
BT 520
500 500
L4 7 00010 18 19 33 3% B 31 M 37 40 43 46 48 S mw AN N W o AR R R 2R DD R
Mew s Trers

Type I. Sequential Route Construction

Type I1. Parallel Route Construction

Fig 8 Influence of the parameters p on the trade-off the Type I and Type 11

Table 2: The computational results of MMAS with local search algorithm

NO BKS BT-Type L % RPD Time (Sec.) BT-Type I1 % RPD Time (Sec.)
C1 524.610 529.851 0.999 96.860 524.610 0.000 96.079
C2 835.260 835.260 0.000 1070.340 837.032 0.212 1028.671
C3 826.140 835.357 1.116 1060.780 834.063 0.959 1189.203
C4 1028.420 1056.110 2.692 2926.660 1032.400 0.387 2970.890
C5 1291.450 1327.780 2.813 891.330 1300.100 0.670 901.028
Cé 555.430 556.616 0.214 86.200 555.430 0.000 79.641
C7 909.680 936.649 2.965 143.580 909.680 0.000 140.750
C8 865.940 889.550 2.727 230.170 887.914 2.538 230.547
C9 1162.550 1170.490 0.683 2935.660 1162.550 0.000 2924.657

C10 1395.850 1413.382 1.256 876.470 1400.730 0.350 870.690
C11 1042.110 1063.690 2.071 965.860 1042.250 0.013 652.634

C12 819.560 820.325 0.093 1025.160 819.560 0.000 1004.547

C13 1541.140 1553.593 0.808 1015.240 1542.864 0.112 1000.656

C14 866.370 880.285 1.606 960.500 866.370 0.000 949.658

Avg. 976.036 990.638 1.432 1020.344 979.682 0.374 941.926
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Comparision of Type [anl Type I
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Fig 8 Comparison of construction solution methods

In that table, the following notation is used:

BT -Type I= Serial method

and BT -Type II= Parallel method

BT- Obj..= the best length tour of objective function

solution. In Fig 8, the proposed heuristic can find
some good solutions with reasonable time. The
relative percentages deviation of the parallel
method and serial method has been a range of
varies are 0.0%-2.54% and 0.0%-2.81%,
respectively.

4.4 Coparisons of MMAS with Other
Meta-Heuristics

In this section, we will present numerical
results for our approach and compare them with
results of the other meta-heuristics in terms of RPD,
shown in the Table 3, we compare the performance
of the proposed method to that of SA TS GA and
IACS, the numbers in bold indicate the best
solution among eight algorithms. It can be observed
from Table 3 that the proposed method is able to
find the better solutions for test problem C1 C2
C6 C7 C9 C12 and C14, so it is equal to the best
known solutions in the operation-library. Then, we
can see the proposed method outperformed in the
term total travel distances of all methods.

Table 3 : Computational results of MMAS

Avg. CPU Time (sec.) = Average computational time (sec.)
BKS = the best known solution from OR-library
(%)RPD = ((BT- Obj.-BKS)/BKS)*100%

The MMAS also yields the best solutions
among the other algorithms in 10 out of 14
problems, as shown in Table 3 but some instances
inferior to IACS method like C3 C8 and CI1 in
term of RPD. However, the proposed method can
provide a better solution than TACS method such
asin C4 C5 C9 C10 C12 and C13

In Fig 9, an average performance gap about
0.36% of the best known results. Move-Exchanges
and Hybrid 2-opt/*Or-Opt algorithms is the most
powerful local search in this research which can
improve the solution both inter-route and intra-
route. However, it increases the computational time
when every two or three swaps are examined. For
the effects of the computer performance are
influenced by many factors such as CPU speed,
memory capacity, operation system and coding
programming. Therefore, a fair transformation of
computational time is difficult to establish.
However, our method can take average
computational time equal to 941.93 seconds for

NO [1]AS 21AS [3ISA [4]SA [51TS [6]TS [71GA [SIIACS MMAS
C1 0.00 0.00 0.65 0.00 0.00 0.00 0.04 0.00 0.000
Cc2 423 1.08 0.40 0.69 0.06 0.00 1.74 0.01 0.000
Cc3 6.45 0.75 0.37 0.47 0.40 0.00 1.76 0.61 0.959
Cc4 11.57 3.22 2.88 3.36 0.75 0.11 2.67 0.84 0.387
Cs 14.09 4.03 6.55 5.31 242 0.55 6.76 225 0.670
Cé 1.35 0.87 0.00 0.00 0.00 0.00 0.87 0.00 0.000
c7 423 0.72 0.00 1.13 0.39 6.15 0.49 0.00 0.000
cs 234 0.09 0.09 0.47 0.00 1.75 0.79 0.00 2.538
Cc9 3.39 2.88 0.14 2.96 1.31 - 2.62 0.61 0.000
C10 7.80 4.00 1.58 474 1.62 3.11 6.25 0.99 0.350
cu 2.91 222 12.85 0.00 3.31 0.00 1.74 0.00 0.013
C12 0.05 0.00 0.79 0.18 0.00 0.00 7.11 1.50 0.000
Cc13 3.20 1.22 0.31 1.74 2.12 5.02 1.37 0.29 0.112
C14 0.40 0.08 2.73 0.07 0.00 5.64 0.69 0.00 0.000
Avg. 4.43 1.51 2.09 1.36 0.86 1.60 2.49 0.51 0.360

[1] AS by Bullnheimer et al. (1998) [2] IAS by Bullnheimer et al. (1999a) [3] SA by Osman (1993) [4] SA by Van Breedam
(1995) [5] TS by Gendreau et al. (1994) [6] TS by Xu and Kelly (1996) [7] GA by Baker and Avechew (2003) [8] IACS by Ho

Chan et al (2006)
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each instances (or 15.69 minutes), so it's reasonable
time.

5. Conclusions

In this research, we have proposed MMAS
for solving VRP. It is efficiently to find the good
solutions. In addition, we have evaluated the
performance of our results with other heuristics
such as Simulated Annealing (SA) Tabu Search
(TS) Genetic Algorithm (GA) and Improved Ant
Colony System (IACS) method. The MMAS
method can be outperformed SA TS and GA, but
in some cases inferior to IACS. The results indicate
that this method performed as well in terms of the
solution quality and run time consumed by
compared with other heuristic approach on 14 test
problems. Our results demonstrate that MMAS
achieves a strongly performance for the VRP. For
further research, we will improve local search to
obtain better solutions. Very large scale
neighborhood search algorithm will also be studied
to solve VRP.
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