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Abstract 

This study employs Social Network Analysis (SNA) to investigate the structural 

mechanisms that influence Enterprise Innovation Performance (EIP) within an open 

innovation ecosystem. Based on expert judgment data, a Knowledge Interaction Network 

model was constructed. The results reveal 220 edges in the network, indicating complex 

relationships among the 20 factors. The network density is 0.703, and the average 

distance between nodes is 1.468, suggesting high interconnections and a significant 

impact on innovation performance. Quantitative analysis of key indicators, such as degree 

centrality, betweenness centrality, and closeness centrality, reveals a core-periphery 

network topology. The study finds that critical factors, such as Knowledge Absorption 

Efficiency (A2) and Cross-functional Collaboration (B3), occupy central positions and play 

pivotal roles in knowledge diffusion and cross-boundary integration. These core nodes 

not only facilitate knowledge flow and coordination but also emphasize that innovation 

performance depends not only on the presence of specific capabilities but also on their 

structural embeddedness within the network. This study advances the theoretical 

understanding of the capability-structure-performance mechanism in innovation 

management, offering practical guidance to enterprises seeking to enhance their 

innovation capabilities through strategic network positioning. 
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Introduction 

Enterprise innovation performance (EIP) is shaped not only by internal 

capabilities but also by complex, interdependent factors within a broader innovation 

ecosystem. Recent innovation management research highlights that innovation is not the 

result of isolated factors but emerges from the coordinated functioning of elements such 

as organizational learning, cross-functional collaboration, platform engagement, resource 

integration, and knowledge recombination (Huggins et al., 2020). These factors form 

relational networks that mediate the unfolding of innovation outcomes, with structural 

configurations playing a critical role in determining how these capabilities interact. 

Traditionally, research has treated these factors as independent variables, often 

overlooking their structural interdependencies  (Jansen & Zietsma, 2021). From an open 

innovation ecosystem perspective, innovation is not a linear process confined within firm 

boundaries, but rather a distributed process across dynamic networks (Vanhaverbeke & 

Cloodt, 2022; Tushman & O'Reilly, 2023; Bogers et al., 2023). Social Network Analysis 

(SNA), rooted in graph theory and relational sociology, offers a powerful framework for 

studying these structural relationships, revealing key nodes that influence knowledge 

diffusion and innovation performance (Uzzi & Spiro, 2005; Chesbrough & Bogers, 2024). 

However, there is a gap in the literature regarding the structural analysis of 

innovation performance. Most studies overlook how innovation capabilities interact 

within systemic structures and fail to examine these relationships through an SNA lens. 

In light of this, the present study aims to explore the structural mechanisms affecting 

enterprise innovation performance within the context of open innovation ecosystems 

from a social network perspective. The specific research objectives are as follows: (1) To 

construct an interactive network of innovation-enabling factors and reveal their structural 

relationships. (2) To identify core nodes, bridging positions, structural holes, and other 

features within the network, and analyze their roles in knowledge diffusion and 

innovation generation. (3) To integrate both capability-based and structure-based 

perspectives in exploring the impact of network configuration on enterprise innovation 

performance. 
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Methodology 

 1.  Construction of the Factor System 

  To examine the structural mechanisms driving enterprise innovation 

performance (EIP), this study first developed a multi-dimensional factor system that 

reflects both internal knowledge capabilities and external relational embedding. This 

dual perspective is grounded in prior research emphasizing that innovation outcomes 

result not only from what firms know, but also from how they interact within broader 

innovation ecosystems. 

  Internally, knowledge interaction capability (KIC), comprising knowledge 

assimilation, transformation, and sharing, enables continuous learning and knowledge-

based innovation (Zahra & George, 2002; Crossan & Apaydin, 2010). Externally, firms 

operate within open innovation eco-networks (OIE), where structural factors such as 

relational strength, trust, openness, network centrality, and platform integration 

significantly influence knowledge flow and access to diverse resources (Laursen & Salter, 

2006; Huggins et al., 2020). 

 To ensure the content validity of the factor system, this study is grounded in an 

integrated theoretical framework that synthesizes internal knowledge foundations with 

external network embeddedness. Specifically, the Knowledge Interaction Capability (KIC) 

dimension is conceptualized through the core lineage of Absorptive Capacity Theory. 

The operationalization of Knowledge Assimilation Capability (A1-A4) is derived from 

Zahra and George's (2002) seminal work, which delineates the processes of knowledge 

acquisition and internalization. Knowledge Transformation Capability (B1-B4), in turn, 

aligns with Crossan and Apaydin's (2010) multidimensional framework for organizational 

innovation, which focuses on the internal combination and application of knowledge. 

Meanwhile, the measures for Knowledge Sharing Capability (C1-C4) are informed by the 

insights of Inkpen and Tsang (2005), who illuminate the mechanisms of knowledge 

transfer from a social capital perspective. Concurrently, the Open Innovation Eco-

network (OIE) dimension is deeply rooted in social network theory. The assessment of 

Network Relationship Embedding (D1-D4) draws upon Granovetter's (1985) concept of 

relational embeddedness, emphasizing the pivotal role of trust, frequent interaction, and 

resource ties. The conceptualization of Network Structure Embedding (E1-E4) integrates 
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Burt's (1992) theory of structural holes with Freeman's (1978) metrics of network 

centrality, aiming to capture the critical positional and structural advantages a firm holds 

within the overarching innovation network. 

  Building on this theoretical foundation, 20 innovation-related factors were 

identified across the two dimensions of KIC and OIE, as shown in Table 1. Each factor 

was assigned a code (e.g., A2 = Knowledge Absorption Efficiency) and served as a node 

in the social network analysis. This factor system provides the structural basis for 

analyzing the interdependencies among innovation drivers within the network. 

Table 1  System of factors influencing enterprise innovation performance. 

Primary 

factors 

Secondary 

factors 

Factors No 

Knowledge 

Interaction 

Capability 

(KIC) 

Knowledge 

Assimilation 

Capability 

(KAC) 

Diversity of knowledge acquisition capacity A1 

Efficiency of knowledge absorption A2 

Cross-sectoral knowledge integration mechanisms A3 

Internalization of knowledge validates competence A4 

Knowledge 

Transformation 

Capability 

(KTC) 

Diversity of knowledge application scenarios B1 

Speed of knowledge commercialization B2 

Cross-functional collaboration capacity B3 

Technology adaptation improvements B4 

Knowledge 

Sharing 

Capability 

(KSC) 

Frequency of use of shared platforms C1 

Employee willingness to share C2 

Sharing depth across organizations C3 

Shared feedback mechanisms C4 

Open 

Innovation 

Eco-network 

(OIE) 

Network 

Relationship 

Embedding 

(NRE) 

Strength of trust in cooperation D1 

Frequency of information interactions D2 

Resource complementarity D3 

Conflict resolution efficiency D4 

Network 

Structure 

Embedding 

(NSE) 

Nodal centrality E1 

Structural cavity occupies E2 

Network openness E3 

Subgroup connectivity E4 
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 2. Data Collection and Matrix Formation 

  To capture the perceived interdependencies among innovation-related 

factors, this study employed a structured expert evaluation approach. A panel of ten 

experts was purposively selected based on the following stringent criteria: (1) a minimum 

of 15 years of professional experience in domains directly related to innovation 

management, R&D, or technology strategy; (2) holding a senior professional title (e.g., 

Professor, Senior Engineer) or a middle-to-senior management position (e.g., R&D Director, 

Head of Innovation); (3) representing diverse perspectives from both academia (5 experts) 

and high-tech industries (5 experts), including sectors such as automotive, aerospace, 

and electronics. This small but highly qualified expert panel is consistent with 

established methodologies for eliciting reliable judgments in complex systems where 

empirical data is scarce, such as the Delphi technique and Decision Making Trial and 

Evaluation Laboratory (DEMATEL) studies (Hsu & Sandford, 2007). The experts were 

invited to assess the strength of influence between all possible pairs of factors. 

  The aggregated scores were compiled into a 20 × 20 weighted, directed 

adjacency matrix, reflecting the collective view of factor interrelationships. This matrix 

served as the basis for the subsequent social network analysis, enabling a quantitative 

examination of the structural properties of the innovation system. 

 3.  Network Modeling and Visualization Tools 

  To analyze the structure of the innovation factor network, the weighted 

adjacency matrix was processed using UCINET 6.0 for network metrics and NetDraw for 

visualization (Borgatti et al., 2013). In the network, each node represents an innovation 

factor, and each directed edge indicates the influence of one factor on another, with the 

edge thickness reflecting the strength of that influence. 

  This method allows for systematic mapping of the relational structure among 

factors, capturing both the density and directionality of interactions. Unlike traditional 

linear models, this approach highlights the interconnected and networked nature of 

innovation dynamics (Wasserman & Faust, 1994). 
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Figure 1  Innovation Factor Interaction Network 

The Knowledge Interaction Network model was constructed in UCINET, and the 

results are shown in Figure 1. To quantitatively analyze the structural characteristics of 

this network, key metrics were computed using standard methods in social network 

analysis (Wasserman & Faust, 1994). The total number of edges represents the count of 

all directed connections between nodes. Network density is defined as the ratio of actual 

edges to the maximum possible number of edges in a directed network, calculated using 

the formula 1: 
 

D =
୐

୒(୒ିଵ)
                                                                              (1) 

 

Where L is the number of existing edges, and N is the number of nodes. The 

average distance is the mean of the shortest path lengths between all reachable pairs 

of nodes. Specifically, our analysis identified 220 edges, indicating a high degree of 

complexity in the relationships among the 20 factors. The network density is 0.703, which 

is significantly higher than 0.5, indicating a highly complex network with tight 

interconnections among factors. The average distance between nodes in the network is 

1.468, indicating a high degree of ease in the interaction and influence among the factors. 
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 4.  Centrality Metrics 

  To identify the most influential elements in the innovation network, classical 

centrality indicators were computed, including out-degree, betweenness, and closeness 

(Freeman, 1978; Borgatti & Everett, 2006). These metrics provide insight into which nodes 

exert the most significant structural influence and play coordinating roles in the 

knowledge interaction process. Out-degree centrality measures the number of direct 

outgoing connections from a node, reflecting its ability to exert influence over other 

factors. Betweenness centrality captures the extent to which a node lies on the shortest 

paths between other nodes, indicating its role as a bridge or coordinator. Closeness 

centrality measures the ease with which a node can reach all others in the network, 

indicating its overall accessibility. These metrics provide complementary perspectives on 

a factor’s strategic position in the network. Nodes with high values on these indicators 

are likely to play key roles in knowledge propagation, resource coordination, and system-

wide connectivity, all of which are closely associated with enhanced innovation 

outcomes (Faridian & Neubaum, 2019). 

 5.  Structural Hole Metrics 

  To move beyond surface-level influence and reveal latent coordination 

dynamics, this study further assessed the brokerage potential of network nodes using 

Burt’s (1992) structural hole framework. Brokerage roles are crucial for connecting 

otherwise unconnected knowledge domains and facilitating cross-boundary innovation. 

  Three structural indicators were calculated to evaluate each node’s 

brokerage capacity: 

  (1) Effective size, which reflects the number of non-redundant ties a node 

maintains, indicating the diversity of its connections. 

  (2) Efficiency, representing the ratio of adequate size to total degree, shows 

how effectively a node leverages its relationships. 

  (3) Constraint, a measure of relational redundancy, where lower values signal 

greater structural autonomy and potential to act as a broker. 

  Nodes with a high adequate size and low constraint are well positioned to 

bridge otherwise disconnected subgroups, thereby facilitating the transfer, recombination, 

and diffusion of novel knowledge. These so-called knowledge brokers play a vital role in 
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enhancing innovation outcomes by accessing heterogeneous resources and mediating 

between otherwise isolated domains (Granovetter, 1985; Inkpen & Tsang, 2005). 

 6.  Cohesive Subgroup Analysis 

  To uncover potential modularity and role differentiation within the 

innovation network, the study employed CONCOR (Convergence of Iterated Correlations) 

clustering. This method partitions nodes based on structural equivalence, grouping 

factors that share similar patterns of relational ties (Wasserman & Faust, 1994). 

  The resulting cohesive subgroups reflect a functionally differentiated structure 

within the network. Some clusters are characterized by tightly interconnected nodes that 

engage in knowledge assimilation and internal exchange, thereby forming the cognitive 

core of the system. Others occupy intermediary positions that bridge distinct modules and 

facilitate cross-domain coordination. A third type of subgroup includes more loosely 

connected factors that provide complementary support or specialized services at the 

periphery. 

  This layered and distributed configuration aligns with the logic of open 

innovation ecosystems, in which innovation arises from the interaction among 

differentiated roles rather than from isolated actors. Recognizing such modularity offers 

practical value for strategic resource allocation and targeted policy interventions (Provan 

et al., 2007). 
 

Results 

 The Knowledge Interaction Network model (Figure 1) visually illustrates the high 

interconnectivity among the 20 factors. The dense web of connections directly reflects 

the high network density (0.703) and the substantial number of relational pathways (220 

edges), as quantified later. This complexity underscores that innovation arises from a 

system of interdependent factors rather than from isolated elements. 

  1.  Centrality Analysis Results 

  The centrality analysis highlights several key nodes that play dominant roles 

in the innovation factor network. In particular, Knowledge Absorption Efficiency (A2), 

Knowledge Internalization & Reuse (A3), and Cross-Functional Collaboration (B3) 

consistently rank highest across the three centrality metrics: out-degree, betweenness, 

and closeness. Table 2 presents the top ten factors ranked by their centrality measures. 
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The table highlights how these nodes serve as both influential drivers and structural 

coordinators within the network. 
 

Table 2   Key centrality measures of innovation factors. 
 

Factor Code Factor Name Out-Degree Betweenness 

Centrality 

Closeness 

Centrality 

A2 Knowledge Absorption Efficiency 14.10 72.4 0.683 

A3 Knowledge Internalization & Reuse 12.75 69.8 0.670 

B3 Cross-Functional Collaboration 13.40 81.6 0.691 

A1 Knowledge Acquisition Diversity 13.20 55.1 0.672 

E3 Network Openness 12.90 66.2 0.664 

D1 Trust-Based Cooperation 11.85 50.3 0.659 

C2 Platform Integration Capability 10.95 42.7 0.648 

D2 Inter-Organizational Trust 11.10 47.8 0.652 

B1 Knowledge Transfer Process 

Optimization 

9.85 39.2 0.640 

E1 Network Centrality Awareness 9.35 36.5 0.632 

These results suggest that A2 and A3 constitute the core of the internal 

knowledge interaction capability, driving innovation by enabling firms to absorb and 

restructure knowledge acquired from external sources effectively. Meanwhile, B3 serves 

a critical organizational role by facilitating cross-functional knowledge flows, ensuring 

that knowledge is not siloed within departments but is instead mobilized throughout the 

enterprise. 

In network terms, these nodes act not only as influencers (via out-degree) but 

also as connectors (via betweenness) and rapid disseminators (via closeness). Their 

structural prominence aligns with prior research, which emphasizes that both the depth 

of knowledge and the ease of organizational diffusion are vital to the success of 

innovation (Cohen & Levinthal, 1990; Crossan & Apaydin, 2010). 

 2. Structural Hole Analysis Results 

  Beyond centrality, the analysis of structural holes provides deeper insight 

into the brokerage functions of these same core factors. According to Burt’s theory 

(1992), nodes that bridge disconnected groups without redundancy can serve as strategic 

knowledge brokers within the system. 
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  To quantify brokerage potential, three structural hole indicators were 

calculated: adequate size, efficiency, and constraint. These results are presented in Table 

3, which highlights the top-performing nodes in terms of their ability to span gaps and 

connect previously unlinked parts of the network. 
 

Table 3  Structural hole indicators of selected factors. 
 

Factor 

Code 

Factor Name Effective 

Size 

Efficiency Constraint Hierarchy 

A2 Knowledge Absorption 

Efficiency 

5.80 0.72 0.22 0.35 

A3 Knowledge Internalization & 

Reuse 

5.67 0.70 0.25 0.33 

B3 Cross-Functional Collaboration 6.02 0.75 0.19 0.29 

D2 Inter-Organizational Trust 4.80 0.64 0.31 0.41 

E3 Network Openness 5.10 0.68 0.27 0.38 

A1 Knowledge Acquisition 

Diversity 

5.25 0.69 0.28 0.36 

The same three factors A2, A3, and B3 exhibit strong brokerage potential, 

characterized by: 

(1) High effective size, indicating access to diverse, non-overlapping sources of 

knowledge. 

(2) High efficiency, reflecting optimal utilization of network connections. 

(3) Low constraint, meaning reduced redundancy among their ties and greater 

structural autonomy. 

While centrality reflects their visibility and influence, structural hole metrics 

reveal how these nodes function as relational bridges, facilitating the recombination of 

heterogeneous knowledge. This dual role, being both influential and structurally flexible, 

makes them pivotal to sustaining both incremental and exploratory innovation within 

the ecosystem (Granovetter, 1985; Inkpen & Tsang, 2005). 

3 Subgroup Clustering Results 

To further explore the underlying structure of the innovation factor network, 

this study employed CONCOR (Convergence of Iterated Correlations) clustering to 

identify cohesive subgroups. This method groups nodes based on structural equivalence, 
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defined as similarity in their relational patterns with other nodes (Wasserman & Faust, 

1994). The resulting clusters reveal distinct modular structures within the network, each 

reflecting a functionally differentiated role in the innovation ecosystem. 

The analysis identified five cohesive subgroups, each characterized by varying 

levels of internal density and functional orientation. These subgroups are summarized in 

Table 4. 
 

Table 4  Cohesive subgroups based on structural equivalence. 
 

Subgroup Included Factors Functional Role Description 

Group 1 A1, A2, A3 Core knowledge assimilation and absorption 

Group 2 B1, B2, C1, D3 Knowledge process coordination 

Group 3 B3, D1, D2 Trust-based bridge and collaboration 

Group 4 C2, C3, E1, E2 Platform integration and network positioning 

Group 5 A4, B4, D4, E4 Peripheral knowledge support 

 

Group 1: functions as the core knowledge engine, responsible for acquiring, 

absorbing, and internalizing external knowledge into the organizational system. 

Group 2: includes factors related to the coordination and optimization of 

knowledge processes, supporting the operational integration of knowledge across units. 

Group 3:  comprises nodes with strong brokerage and trust-building roles, 

facilitating collaboration and serving as structural bridges within the network. 

Group 4:  reflects the firm’s embeddedness in external innovation platforms, 

highlighting the importance of openness, positioning, and network strategy. 

Group 5:  while structurally peripheral, it likely contributes to niche expertise 

and flexible support functions within the broader innovation system. 

It is important to note that the total number of factors listed across the five 

subgroups in Table 4 exceeds 20. This is a characteristic outcome of the CONCOR 

algorithm, which partitions nodes into groups based on structural equivalence (i.e., 

similarity in their connection patterns to other nodes) rather than mutual exclusivity. A 

single factor can be structurally equivalent to members of different subgroups when 

considered in terms of its overall role in the network, leading to its inclusion in analyses 
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of multiple clusters. This reflects the multifaceted roles that key factors play within the 

innovation ecosystem. 

The modular structure revealed by this analysis highlights the distributed and 

systemic nature of enterprise innovation, in which multiple groups of factors play 

complementary and interdependent roles (Provan et al., 2007; Huggins et al., 2020). From 

a practical standpoint, this implies that policy and managerial interventions should target 

not only individual factors but also the relational configurations and functional roles of 

subgroups within the innovation ecosystem. 

 

Discussions 

This study introduces a Structure–Capability–Performance (SCP) framework to 

bridge the identified research gap, moving beyond linear models by systematically 

integrating micro-level capabilities with macro-level network structures. The core finding 

that innovation performance is codetermined by what a firm can do and where its 

capabilities are located in the interaction network offers a more nuanced explanation 

for innovation success in open ecosystems. 

The consistent prominence of Knowledge Absorption Efficiency (A2), Cross-

sectoral Knowledge Integration Mechanisms (A3), and Cross-functional Collaboration 

Capacity (B3) across all analyses vividly illustrates this framework. Their high centrality 

confirms their role as influential drivers, while their optimal structural hole metrics (high 

adequate size, low constraint) reveal a critical dual role: they are not only powerhouses of 

knowledge but also pivotal relational bridges. This function of occupying strategic brokerage 

positions to enable knowledge recombination is a critical mechanism for innovation, 

consistent with recent theoretical advancements on managing structural holes in ecosystems 

(Kotlar et al., 2024). This dual role, uncovered through the combined use of centrality and 

structural hole analyses, indicates that these factors possess structural autonomy to broker 

connections, recombine heterogeneous knowledge, and control information flows. This 

finding underscores that the structural embeddedness of knowledge capabilities within a 

network is a decisive factor for innovation, as highlighted in recent studies on knowledge 

management in innovation networks (Giannopoulou et al., 2024). 
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Furthermore, the cohesive subgroup analysis confirms the distributed nature of 

open innovation. The identification of five functionally differentiated subgroups suggests 

that managerial and policy interventions should target relational configurations and 

functional roles rather than individual factors. For instance, managers could: 

Fortify the trust-based bridge (Group 3: B3, D1, D2) by investing in alliance 

management and trust-building mechanisms. 

Enhance the core knowledge engine (Group 1: A1, A2, A3) through targeted R&D 

and personnel training. 

Integrate peripheral support factors (Group 5) into the core network to prevent 

the loss of niche expertise. 

From a theoretical perspective, this study embeds structural network analysis 

directly into innovation performance modeling, demonstrating that the interplay 

between capability and structure is multiplicative rather than additive. In practice, it 

provides a diagnostic map for firms to identify and strengthen their strategic central and 

brokering capabilities, and for policymakers to facilitate connectivity, particularly for 

peripheral actors. 

In sum, the proposed Structure–Capability– Performance (SCP) framework 

provides a theoretically grounded and empirically supported explanation for how 

innovation is generated, diffused, and sustained in open systems. It lays a conceptual 

foundation for further research and offers actionable guidance for strategy design and 

innovation network governance. 
 

Conclusions 

This study has employed Social Network Analysis (SNA) to map the complex 

network of factors that drive enterprise innovation performance (EIP). Our findings, based 

on a network of 20 factors encompassing both knowledge interaction capabilities and 

the open innovation ecosystem, achieve the three core objectives of this research. 

The analysis reveals that innovation performance stems not only from robust 

internal capabilities but also critically from their structural embeddedness. We identified 

Knowledge Absorption Efficiency (A2), Cross-sectoral Knowledge Integration Mechanisms 

(A3), and Cross-functional Collaboration Capacity (B3) as linchpins of the network. These 
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factors play a dual role: they are powerful due to their central influence, but also act as 

essential relational bridges, a function highlighted by combining centrality and structural 

hole analyses. 

The discovery of a modular structure through subgroup analysis further supports 

the conclusion that innovation is a distributed process. This implies that managers should 

focus on nurturing the functional roles of entire subgroups, for instance, by reinforcing 

trust-based bridges rather than optimizing factors in isolation. 

Synthesizing these insights, we propose the Structure–Capability–Performance 

(SCP) framework to integrate micro-level capabilities with macro-level network structures. 

While the expert-derived model offers a robust conceptual foundation, it also points the 

way for future research to incorporate empirical interaction data and longitudinal tracking, 

which would further validate and dynamize the proposed framework. 
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