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STRUCTURAL DETERMINANTS OF ENTERPRISE INNOVATION
USING A SOCIAL NETWORK ANALYSIS APPROACH
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Abstract

This study employs Social Network Analysis (SNA) to investigate the structural
mechanisms that influence Enterprise Innovation Performance (EIP) within an open
innovation ecosystem. Based on expert judgment data, a Knowledge Interaction Network
model was constructed. The results reveal 220 edges in the network, indicating complex
relationships among the 20 factors. The network density is 0.703, and the average
distance between nodes is 1.468, suggesting high interconnections and a significant
impact on innovation performance. Quantitative analysis of key indicators, such as degree
centrality, betweenness centrality, and closeness centrality, reveals a core-periphery
network topology. The study finds that critical factors, such as Knowledge Absorption
Efficiency (A2) and Cross-functional Collaboration (B3), occupy central positions and play
pivotal roles in knowledge diffusion and cross-boundary integration. These core nodes
not only facilitate knowledge flow and coordination but also emphasize that innovation
performance depends not only on the presence of specific capabilities but also on their
structural embeddedness within the network. This study advances the theoretical
understanding of the capability-structure-performance mechanism in innovation
management, offering practical guidance to enterprises seeking to enhance their
innovation capabilities through strategic network positioning.
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Introduction

Enterprise innovation performance (EIP) is shaped not only by internal
capabilities but also by complex, interdependent factors within a broader innovation
ecosystem. Recent innovation management research highlights that innovation is not the
result of isolated factors but emerges from the coordinated functioning of elements such
as organizational learing, cross-functional collaboration, platform engagement, resource
integration, and knowledge recombination (Huggins et al., 2020). These factors form
relational networks that mediate the unfolding of innovation outcomes, with structural
configurations playing a critical role in determining how these capabilities interact.

Traditionally, research has treated these factors as independent variables, often
overlooking their structural interdependencies (Jansen & Zietsma, 2021). From an open
innovation ecosystem perspective, innovation is not a linear process confined within firm
boundaries, but rather a distributed process across dynamic networks (Vanhaverbeke &
Cloodt, 2022; Tushman & O'Reilly, 2023; Bogers et al,, 2023). Social Network Analysis
(SNA), rooted in graph theory and relational sociology, offers a powerful framework for
studying these structural relationships, revealing key nodes that influence knowledge
diffusion and innovation performance (Uzzi & Spiro, 2005; Chesbrough & Bogers, 2024).

However, there is a gap in the literature regarding the structural analysis of
innovation performance. Most studies overlook how innovation capabilities interact
within systemic structures and fail to examine these relationships through an SNA lens.
In light of this, the present study aims to explore the structural mechanisms affecting
enterprise innovation performance within the context of open innovation ecosystems
from a social network perspective. The specific research objectives are as follows: (1) To
construct an interactive network of innovation-enabling factors and reveal their structural
relationships. (2) To identify core nodes, bridging positions, structural holes, and other
features within the network, and analyze their roles in knowledge diffusion and
innovation generation. (3) To integrate both capability-based and structure-based
perspectives in exploring the impact of network configuration on enterprise innovation

performance.
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Methodology

1. Construction of the Factor System

To examine the structural mechanisms driving enterprise innovation
performance (EIP), this study first developed a multi-dimensional factor system that
reflects both internal knowledge capabilities and external relational embedding. This
dual perspective is grounded in prior research emphasizing that innovation outcomes
result not only from what firms know, but also from how they interact within broader
innovation ecosystems.

Internally, knowledge interaction capability (KIC), comprising knowledge
assimilation, transformation, and sharing, enables continuous learming and knowledge-
based innovation (Zahra & George, 2002; Crossan & Apaydin, 2010). Externally, firms
operate within open innovation eco-networks (OIE), where structural factors such as
relational strength, trust, openness, network centrality, and platform integration
significantly influence knowledge flow and access to diverse resources (Laursen & Salter,
2006; Huggins et al., 2020).

To ensure the content validity of the factor system, this study is grounded in an
integrated theoretical framework that synthesizes internal knowledge foundations with
external network embeddedness. Specifically, the Knowledge Interaction Capability (KIC)
dimension is conceptualized through the core lineage of Absorptive Capacity Theory.
The operationalization of Knowledge Assimilation Capability (A1-Ad) is derived from
Zahra and George's (2002) seminal work, which delineates the processes of knowledge
acquisition and internalization. Knowledge Transformation Capability (B1-B4), in turn,
aligns with Crossan and Apaydin's (2010) multidimensional framework for organizational
innovation, which focuses on the internal combination and application of knowledge.
Meanwhile, the measures for Knowledge Sharing Capability (C1-C4) are informed by the
insights of Inkpen and Tsang (2005), who illuminate the mechanisms of knowledge
transfer from a social capital perspective. Concurrently, the Open Innovation Eco-
network (OIE) dimension is deeply rooted in social network theory. The assessment of
Network Relationship Embedding (D1-D4) draws upon Granovetter's (1985) concept of
relational embeddedness, emphasizing the pivotal role of trust, frequent interaction, and

resource ties. The conceptualization of Network Structure Embedding (E1-E4) integrates
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Burt's (1992) theory of structural holes with Freeman's (1978) metrics of network
centrality, aiming to capture the critical positional and structural advantages a firm holds
within the overarching innovation network.

Building on this theoretical foundation, 20 innovation-related factors were
identified across the two dimensions of KIC and OIE, as shown in Table 1. Each factor
was assigned a code (e.g., A2 = Knowledge Absorption Efficiency) and served as a node
in the social network analysis. This factor system provides the structural basis for

analyzing the interdependencies among innovation drivers within the network.

Table 1 System of factors influencing enterprise innovation performance.

Primary Secondary Factors No
factors factors

Knowledge Diversity of knowledge acquisition capacity Al

Assimilation Efficiency of knowledge absorption A2

Capability Cross-sectoral knowledge integration mechanisms A3

(KAC) Internalization of knowledge validates competence Ad

Knowledge Knowledge Diversity of knowledge application scenarios B1
Interaction Transformation ~ Speed of knowledge commercialization B2
Capability Capability Cross-functional collaboration capacity B3
(KIO) (KTC) Technology adaptation improvements B4
Knowledge Frequency of use of shared platforms C1

Sharing Employee willingness to share 2

Capability Sharing depth across organizations a3

(KSCO) Shared feedback mechanisms ca

Open Network Strength of trust in cooperation D1
Innovation Relationship Frequency of information interactions D2
Eco-network  Embedding Resource complementarity D3
(OIE) (NRE) Conflict resolution efficiency D4
Network Nodal centrality El

Structure Structural cavity occupies E2

Embedding Network openness E3

(NSE) Subgroup connectivity Ed
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2. Data Collection and Matrix Formation

To capture the perceived interdependencies among innovation-related
factors, this study employed a structured expert evaluation approach. A panel of ten
experts was purposively selected based on the following stringent criteria: (1) a minimum
of 15 years of professional experience in domains directly related to innovation
management, R&D, or technology strategy; (2) holding a senior professional title (e.g.,
Professor, Senior Engineer) or a middle-to-senior management position (e.g., R&D Director,
Head of Innovation); (3) representing diverse perspectives from both academia (5 experts)
and high-tech industries (5 experts), including sectors such as automotive, aerospace,
and electronics. This small but highly qualified expert panel is consistent with
established methodologies for eliciting reliable judgments in complex systems where
empirical data is scarce, such as the Delphi technique and Decision Making Trial and
Evaluation Laboratory (DEMATEL) studies (Hsu & Sandford, 2007). The experts were
invited to assess the strength of influence between all possible pairs of factors.

The aggregated scores were compiled into a 20 X 20 weighted, directed
adjacency matrix, reflecting the collective view of factor interrelationships. This matrix
served as the basis for the subsequent social network analysis, enabling a quantitative
examination of the structural properties of the innovation system.

3. Network Modeling and Visualization Tools

To analyze the structure of the innovation factor network, the weighted
adjacency matrix was processed using UCINET 6.0 for network metrics and NetDraw for
visualization (Borgatti et al.,, 2013). In the network, each node represents an innovation
factor, and each directed edge indicates the influence of one factor on another, with the
edge thickness reflecting the strength of that influence.

This method allows for systematic mapping of the relational structure among
factors, capturing both the density and directionality of interactions. Unlike traditional
linear models, this approach highlights the interconnected and networked nature of

innovation dynamics (Wasserman & Faust, 1994).
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Figure 1 Innovation Factor Interaction Network

The Knowledge Interaction Network model was constructed in UCINET, and the
results are shown in Figure 1. To quantitatively analyze the structural characteristics of
this network, key metrics were computed using standard methods in social network
analysis (Wasserman & Faust, 1994). The total number of edges represents the count of
all directed connections between nodes. Network density is defined as the ratio of actual
edges to the maximum possible number of edges in a directed network, calculated using
the formula 1:

L
" N(N-1)

(1)

Where L is the number of existing edges, and N is the number of nodes. The
average distance is the mean of the shortest path lengths between all reachable pairs
of nodes. Specifically, our analysis identified 220 edges, indicating a high degree of
complexity in the relationships among the 20 factors. The network density is 0.703, which
is significantly higher than 0.5, indicating a highly complex network with tight
interconnections among factors. The average distance between nodes in the network is

1.468, indicating a high degree of ease in the interaction and influence among the factors.
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4. Centrality Metrics

To identify the most influential elements in the innovation network, classical
centrality indicators were computed, including out-degree, betweenness, and closeness
(Freeman, 1978; Borgatti & Everett, 2006). These metrics provide insight into which nodes
exert the most significant structural influence and play coordinating roles in the
knowledge interaction process. Out-degree centrality measures the number of direct
outgoing connections from a node, reflecting its ability to exert influence over other
factors. Betweenness centrality captures the extent to which a node lies on the shortest
paths between other nodes, indicating its role as a bridge or coordinator. Closeness
centrality measures the ease with which a node can reach all others in the network,
indicating its overall accessibility. These metrics provide complementary perspectives on
a factor’s strategic position in the network. Nodes with high values on these indicators
are likely to play key roles in knowledge propagation, resource coordination, and system-
wide connectivity, all of which are closely associated with enhanced innovation
outcomes (Faridian & Neubaum, 2019).

5. Structural Hole Metrics

To move beyond surface-level influence and reveal latent coordination
dynamics, this study further assessed the brokerage potential of network nodes using
Burt’s (1992) structural hole framework. Brokerage roles are crucial for connecting
otherwise unconnected knowledge domains and facilitating cross-boundary innovation.

Three structural indicators were calculated to evaluate each node’s
brokerage capacity:

(1) Effective size, which reflects the number of non-redundant ties a node
maintains, indicating the diversity of its connections.

(2) Efficiency, representing the ratio of adequate size to total degree, shows
how effectively a node leverages its relationships.

(3) Constraint, a measure of relational redundancy, where lower values signal
greater structural autonomy and potential to act as a broker.

Nodes with a high adequate size and low constraint are well positioned to
bridge otherwise disconnected subgroups, thereby facilitating the transfer, recombination,

and diffusion of novel knowledge. These so-called knowledge brokers play a vital role in
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enhancing innovation outcomes by accessing heterogeneous resources and mediating
between otherwise isolated domains (Granovetter, 1985; Inkpen & Tsang, 2005).
6. Cohesive Subgroup Analysis

To uncover potential modularity and role differentiation within the
innovation network, the study employed CONCOR (Convergence of Iterated Correlations)
clustering. This method partitions nodes based on structural equivalence, grouping
factors that share similar patterns of relational ties (Wasserman & Faust, 1994).

The resulting cohesive subgroups reflect a functionally differentiated structure
within the network. Some clusters are characterized by tightly interconnected nodes that
engage in knowledge assimilation and internal exchange, thereby forming the cognitive
core of the system. Others occupy intermediary positions that bridge distinct modules and
facilitate cross-domain coordination. A third type of subgroup includes more loosely
connected factors that provide complementary support or specialized services at the
periphery.

This layered and distributed configuration aligns with the logic of open
innovation ecosystems, in which innovation arises from the interaction among
differentiated roles rather than from isolated actors. Recognizing such modularity offers
practical value for strategic resource allocation and targeted policy interventions (Provan

et al., 2007).

Results

The Knowledge Interaction Network model (Figure 1) visually illustrates the high
interconnectivity among the 20 factors. The dense web of connections directly reflects
the high network density (0.703) and the substantial number of relational pathways (220
edges), as quantified later. This complexity underscores that innovation arises from a
system of interdependent factors rather than from isolated elements.

1. Centrality Analysis Results

The centrality analysis highlights several key nodes that play dominant roles

in the innovation factor network. In particular, Knowledge Absorption Efficiency (A2),
Knowledge Internalization & Reuse (A3), and Cross-Functional Collaboration (B3)
consistently rank highest across the three centrality metrics: out-degree, betweenness,

and closeness. Table 2 presents the top ten factors ranked by their centrality measures.
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The table highlights how these nodes serve as both influential drivers and structural

coordinators within the network.

Table 2 Key centrality measures of innovation factors.

Factor Cod Factor Name Out-Degree  Betweenness Closeness

Centrality Centrality

A2 Knowledge Absorption Efficiency 14.10 724 0.683
A3 Knowledge Internalization & Reuse 12.75 69.8 0.670
B3 Cross-Functional Collaboration 13.40 81.6 0.691
Al Knowledge Acquisition Diversity 13.20 55.1 0.672
E3 Network Openness 12.90 66.2 0.664
D1 Trust-Based Cooperation 11.85 50.3 0.659
C2 Platform Integration Capability 10.95 42.7 0.648
D2 Inter-Organizational Trust 11.10 47.8 0.652
B1 Knowledge Transfer Process 9.85 39.2 0.640
Optimization
El Network Centrality Awareness 9.35 36.5 0.632

These results suggest that A2 and A3 constitute the core of the internal
knowledge interaction capability, driving innovation by enabling firms to absorb and
restructure knowledge acquired from external sources effectively. Meanwhile, B3 serves
a critical organizational role by facilitating cross-functional knowledge flows, ensuring
that knowledge is not siloed within departments but is instead mobilized throughout the
enterprise.

In network terms, these nodes act not only as influencers (via out-degree) but
also as connectors (via betweenness) and rapid disseminators (via closeness). Their
structural prominence aligns with prior research, which emphasizes that both the depth
of knowledge and the ease of organizational diffusion are vital to the success of
innovation (Cohen & Levinthal, 1990; Crossan & Apaydin, 2010).

2. Structural Hole Analysis Results

Beyond centrality, the analysis of structural holes provides deeper insight
into the brokerage functions of these same core factors. According to Burt’s theory
(1992), nodes that bridge disconnected groups without redundancy can serve as strategic

knowledge brokers within the system.
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To quantify brokerage potential, three structural hole indicators were
calculated: adequate size, efficiency, and constraint. These results are presented in Table
3, which highlights the top-performing nodes in terms of their ability to span gaps and

connect previously unlinked parts of the network.

Table 3 Structural hole indicators of selected factors.

Factor Factor Name Effective Efficiency Constraint Hierarchy
Code Size
A2 Knowledge Absorption 5.80 0.72 0.22 0.35
Efficiency
A3 Knowledge Internalization & 5.67 0.70 0.25 0.33
Reuse
B3 Cross-Functional Collaboration 6.02 0.75 0.19 0.29
D2 Inter-Organizational Trust 4.80 0.64 0.31 0.41
E3 Network Openness 5.10 0.68 0.27 0.38
Al Knowledge Acquisition 5.25 0.69 0.28 0.36
Diversity

The same three factors A2, A3, and B3 exhibit strong brokerage potential,
characterized by:

(1) High effective size, indicating access to diverse, non-overlapping sources of
knowledge.

(2) High efficiency, reflecting optimal utilization of network connections.

(3) Low constraint, meaning reduced redundancy among their ties and greater
structural autonomy.

While centrality reflects their visibility and influence, structural hole metrics
reveal how these nodes function as relational bridges, facilitating the recombination of
heterogeneous knowledge. This dual role, being both influential and structurally flexible,
makes them pivotal to sustaining both incremental and exploratory innovation within
the ecosystem (Granovetter, 1985; Inkpen & Tsang, 2005).

3 Subgroup Clustering Results

To further explore the underlying structure of the innovation factor network,

this study employed CONCOR (Convergence of lIterated Correlations) clustering to

identify cohesive subgroups. This method groups nodes based on structural equivalence,
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defined as similarity in their relational patterns with other nodes (Wasserman & Faust,
1994). The resulting clusters reveal distinct modular structures within the network, each
reflecting a functionally differentiated role in the innovation ecosystem.

The analysis identified five cohesive subgroups, each characterized by varying

levels of internal density and functional orientation. These subgroups are summarized in
Table 4.

Table 4 Cohesive subgroups based on structural equivalence.

Subgroup Included Factors Functional Role Description
Group 1 Al, A2, A3 Core knowledge assimilation and absorption
Group 2 B1, B2, C1, D3 Knowledge process coordination
Group 3 B3, D1, D2 Trust-based bridge and collaboration
Group 4 C2,C3,E1, E2 Platform integration and network positioning
Group 5 A4, B4, D4, E4 Peripheral knowledge support

Group 1: functions as the core knowledge engine, responsible for acquiring,
absorbing, and internalizing external knowledge into the organizational system.

Group 2: includes factors related to the coordination and optimization of
knowledge processes, supporting the operational integration of knowledge across units.

Group 3: comprises nodes with strong brokerage and trust-building roles,
facilitating collaboration and serving as structural bridges within the network.

Group 4: reflects the firm’s embeddedness in external innovation platforms,
highlighting the importance of openness, positioning, and network strategy.

Group 5: while structurally peripheral, it likely contributes to niche expertise
and flexible support functions within the broader innovation system.

It is important to note that the total number of factors listed across the five
subgroups in Table 4 exceeds 20. This is a characteristic outcome of the CONCOR
algorithm, which partitions nodes into groups based on structural equivalence (i.e.,
similarity in their connection patterns to other nodes) rather than mutual exclusivity. A
single factor can be structurally equivalent to members of different subgroups when

considered in terms of its overall role in the network, leading to its inclusion in analyses
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of multiple clusters. This reflects the multifaceted roles that key factors play within the

innovation ecosystem.

The modular structure revealed by this analysis highlights the distributed and
systemic nature of enterprise innovation, in which multiple groups of factors play
complementary and interdependent roles (Provan et al., 2007; Huggins et al., 2020). From
a practical standpoint, this implies that policy and managerial interventions should target
not only individual factors but also the relational configurations and functional roles of

subgroups within the innovation ecosystem.

Discussions

This study introduces a Structure ~Capability ~Performance (SCP) framework to
bridge the identified research gap, moving beyond linear models by systematically
integrating micro-level capabilities with macro-level network structures. The core finding
that innovation performance is codetermined by what a firm can do and where its
capabilities are located in the interaction network offers a more nuanced explanation
for innovation success in open ecosystems.

The consistent prominence of Knowledge Absorption Efficiency (A2), Cross-
sectoral Knowledge Integration Mechanisms (A3), and Cross-functional Collaboration
Capacity (B3) across all analyses vividly illustrates this framework. Their high centrality
confirms their role as influential drivers, while their optimal structural hole metrics (high
adequate size, low constraint) reveal a critical dual role: they are not only powerhouses of
knowledge but also pivotal relational bridges. This function of occupying strategic brokerage
positions to enable knowledge recombination is a critical mechanism for innovation,
consistent with recent theoretical advancements on managing structural holes in ecosystems
(Kotlar et al.,, 2024). This dual role, uncovered through the combined use of centrality and
structural hole analyses, indicates that these factors possess structural autonomy to broker
connections, recombine heterogeneous knowledge, and control information flows. This
finding underscores that the structural embeddedness of knowledge capabilities within a
network is a decisive factor for innovation, as highlighted in recent studies on knowledge

management in innovation networks (Giannopoulou et al., 2024).
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Furthermore, the cohesive subgroup analysis confirms the distributed nature of
open innovation. The identification of five functionally differentiated subgroups suggests
that managerial and policy interventions should target relational configurations and
functional roles rather than individual factors. For instance, managers could:

Fortify the trust-based bridge (Group 3: B3, D1, D2) by investing in alliance
management and trust-building mechanisms.

Enhance the core knowledge engine (Group 1: Al, A2, A3) through targeted R&D
and personnel training.

Integrate peripheral support factors (Group 5) into the core network to prevent
the loss of niche expertise.

From a theoretical perspective, this study embeds structural network analysis
directly into innovation performance modeling, demonstrating that the interplay
between capability and structure is multiplicative rather than additive. In practice, it
provides a diagnostic map for firms to identify and strengthen their strategic central and
brokering capabilities, and for policymakers to facilitate connectivity, particularly for

peripheral actors.

In sum, the proposed Structure ~ Capability = Performance (SCP) framework
provides a theoretically grounded and empirically supported explanation for how
innovation is generated, diffused, and sustained in open systems. It lays a conceptual
foundation for further research and offers actionable guidance for strategy design and

innovation network governance.

Conclusions

This study has employed Social Network Analysis (SNA) to map the complex
network of factors that drive enterprise innovation performance (EIP). Our findings, based
on a network of 20 factors encompassing both knowledge interaction capabilities and
the open innovation ecosystem, achieve the three core objectives of this research.

The analysis reveals that innovation performance stems not only from robust
internal capabilities but also critically from their structural embeddedness. We identified
Knowledge Absorption Efficiency (A2), Cross-sectoral Knowledge Integration Mechanisms

(A3), and Cross-functional Collaboration Capacity (B3) as linchpins of the network. These
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factors play a dual role: they are powerful due to their central influence, but also act as
essential relational bridges, a function highlighted by combining centrality and structural
hole analyses.

The discovery of a modular structure through subgroup analysis further supports
the conclusion that innovation is a distributed process. This implies that managers should
focus on nurturing the functional roles of entire subgroups, for instance, by reinforcing
trust-based bridges rather than optimizing factors in isolation.

Synthesizing these insights, we propose the Structure-Capability—Performance
(SCP) framework to integrate micro-level capabilities with macro-level network structures.
While the expert-derived model offers a robust conceptual foundation, it also points the
way for future research to incorporate empirical interaction data and longitudinal tracking,

which would further validate and dynamize the proposed framework.
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