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บทคัดยอ 

ในงานวิจัยนี้เราไดพิจารณาระบบของเซตยอยแปรผนัและไดแนะนําสมการแกปญหา ซึ่งสมมูล

กับระบบของเซตยอยแปรผัน ระบบพลวัตที่สอดคลองกับเซตยอยแปรผันไดถูกนําเสนอ ย่ิงไปกวานั้น 

ผลเฉลยของระบบพลวัตดังกลาวนั้นไดถูกพิสูจน ซึ่งผลลัพธในงานวิจัยชิ้นนี้ไดพัฒนาและขยายปญหา

เซตยอยแปรผันที่ไดศึกษามาแลวในอดีต 
 

คําสําคัญ: ระบบพลวัต เซตยอยแปรผัน ตัวดําเนินการแกปญหา อสมการของ Gronwall 
 

Abstract 

 In this paper, we consider the system of variational inclusion and introduce 

the resolvent equation which is equivalent to the system of variational inclusion. The 

dynamical system associated with the system of variational inclusion is presented. 

Furthermore, the solution of such dynamical system is proved. The results in this paper 

improve and extend the variational inclusion problems which have been appeared in 

literature. 
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Introduction  

 Variational inclusion is the generalization of the variational inequality problem 

which the class of variational inclusions include variational inequalities, complementarity 

problems, convex optimization and saddle point problems as special cases. Then, the 

variational inclusion problem is used to study and apply in fields of optimization and 

control, economics and transportation equilibrium, engineering science, see (Verma, 

2004; Agarwal & Verma, 2009; Lin, 2009). The interesting of the variational inclusion 

problem implies many researches using such problem to develop problem in various 

fields. A system of variational inclusion is the generalized of the variational inclusion 

which the system of variational inclusion is applied in traffic equilibrium problem, Nash 

equilibrium which is more extension than the variational inclusion problem, see 

(Agarwal, 2004; Fang & Huang, 2004; Yan et al., 2005). 

 On the other hand, the dynamical system is well known theory, which is 

applied for considering some problems related to time and is used in many fields such 

as in economics, physics, engineering, medicine and mathematics etc. see (Bahiana & 

Oono, 1990; Dong et al., 1996; Scrimali, 2008; Biswas & Chakraborty, 2015). But not only 

that, the dynamical system is applied with variational inequality problem because the 

dynamical systems implies the mathematical problems for close to the real world 

problem. The methodology which is used to consider the dynamical system and 

variational inequality problem is the projected dynamical system for considering by P. 

Dupuis and A. Nagurney (Dupuis & A. Nagurney, 1993), in 1993. P. Dupuis et al. 

presented the basic theory of the projected dynamical systems and considered the 

relation of the variational inequality theory and the dynamical system theory, that is, 

the set of stationary points of dynamical system coincides with the set of the solutions 

of variational inequality problem. So, the projected dynamical system is used to solve 

some problems on linear and nonlinear in variational inequality. By the previous 

reasons, the dynamical system has been used to apply in financial equilibrium 

problems, optimization problems, fixed point problems, complementarity problem and 

all problems in the framework of variational inequalities (see Dong et al., 1996; 

Nagurney & Zhang, 1996; Bliemer & Bovy, 2003; Isac & Cojocaru, 2002; Ansari et al., 

2013 and the reference therein). The attention of authors to develop the dynamical 

system and variational inequality, in 2002, M. A. Noor (Noor, 2002a, b) introduced the 
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dynamical system for variational inclusion which extended from the aspects of 

dynamical system for variational inequality. By this reasons, the dynamical system for 

variational inclusion is interesting to study because it can be apply in the various real 

world problems. 

 In this paper, we will study the system of variational inclusion by using the 

resolvent operator and introduce the implicit resolvent equation of such system of 

variational inclusion. After that we can introduce the dynamical system associated with 

such implicit resolvent equation. Furthermore, the existence solution of such 

dynamical system is considered. Let H be a real Hilbert space with inner product 〈∙,∙〉 

and norm ‖∙‖. Let 2ୌbe denoted for the class of all nonempty subsets of H. 

 Now, we will recall the fundamental concepts of stability in dynamical system. 

Let the general dynamical system as follows: 

ୢ୶(୲)

ୢ୲
= f(x(t))                                ----------------------(1) 

for x(t) ∈ H, t is a real number and f is a continuous function from H into itself. 

Definition 1 (Ha et al., 2018) A point x∗is an equilibrium point for (1) if f(x∗) = 0. 

  

Lemma 1 (Gronwall’s Lemma) (Ansari et al., 2013) 

 Let uො and vො be real valued nonnegative continuous functions with domain 

{t|t ≥ t଴} and let α(t) =  α଴(|t − t଴|), where α଴ is a monotone increasing function. If 

for all t ≥ t଴, 

uො(t) ≤ α(t) + ∫ uො(s)vො(s)
୲

୲బ
ds, 

then, 

uො(t) ≤ α(t)e
∫ ୴ෝ(ୱ)

౪
౪బ

ds. 

 Now, we will introduce the properties of mappings which are used in our 

results. 

Definition 2 (Suwannawit & Petrot, 2012) A mapping S: H × H → H is said to be a δଵ-

strongly monotone in the first argument if there exists a real number δଵ > 0 such that 

for all x, y ∈ H, 

〈S(x,∙) − S(y,∙), x − y〉 ≥ δଵ‖x − y‖ଶ. 
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Definition 3 (Suwannawit & Petrot, 2012) A mapping S: H × H → H is said to be a βଵ-

Lipschitzain in the first argument if there exists a real number βଵ > 0 such that for all 

x, y ∈ H, 

‖S(x,∙) − S(y,∙)‖ ≤ βଵ‖x − y‖. 

Definition 4 (Noor, 2000) If T is a maximal monotone operator on H, then for a 

constant ρ > 0, the resolvent operator associated with T is defined by 

J୘
஡(u) = (I + ρT)ିଵ(u) 

for all u ∈ H, where I is an identity operator. Also, the resolvent operator J୘ is a single 

valued and nonexpansive mapping, that is,  

ฮJ୘
஡(u) − J୘

஡(v)ฮ ≤ ‖u − v‖ 

for all u, v ∈ H. 

Main Results 

Throughout in this paper, we let Hଵand Hଶ be two real Hilbert spaces. We will 

consider the system of nonlinear variational inclusion (SNVI) which was studied by R. 

U. Verma in (Verma, 2004) as follows. Let M: Hଵ → 2ୌభ and N: Hଶ → 2ୌమbe nonlinear 

mappings. Let S: Hଵ × Hଶ → Hଵand T: Hଵ × Hଶ → Hଶ be nonlinear mappings. To find 

(x, y) ∈ Hଵ × Hଶsuch that 

   0 ∈ S(x, y) + M(x) 

   0 ∈ T(x, y) + N(y).               ----------------------(SNVI) 

Verma considered the existence of the problem (SNVI) by using A-monotonicity. So, in 

this paper we will present the existence of the problem (SNVI) on the resolvent 

operator J୘.  

Lemma 2 Let Hଵ and Hଶ be two real Hilbert spaces. Let S: Hଵ × Hଶ → Hଵand T: Hଵ × Hଶ →

Hଶ be nonlinear mappings. Let M: Hଵ → 2ୌభ and N: Hଶ → 2ୌమ be a maximal monotone 

operators. Then, the following are true: 

1. If (x, y) ∈ Hଵ × Hଶ is a solution to the problem (SNVI) then, for any ρଵ, ρଶ > 0 such that 

x = J୑
஡భ[x − ρଵS(x, y)] and y = J୒

஡మ[y − ρଶT(x, y)]. 
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2. If there exist ρଵ, ρଶ > 0 such that 

x = J୑
஡భ[x − ρଵS(x, y)] and y = J୒

஡మ[y − ρଶT(x, y)]. 

then, (x, y) is a solution to the problem (SNVI). 

Proof 1. Assume that (x, y) ∈ Hଵ × Hଶ is a solution to the problem (SNVI). This implies 

that, for any ρଵ, ρଶ > 0,  

x − ρଵS(x, y) ∈ (I + ρଵM)(x) and y − ρଶT(x, y) ∈ (I + ρଶN)(y). 

Hence, x = J୑
஡భ[x − ρଵS(x, y)] and  y = J୒

஡మ[y − ρଶT(x, y)], where J୑
஡భ = (I + ρଵM)ିଵ and  

J୒
஡మ = (I + ρଶN)ିଵ. 

2. There exist ρଵ, ρଶ > 0 such that 

x = J୑
஡భ[x − ρଵS(x, y)] and  y = J୒

஡మ[y − ρଶT(x, y)]. 

SinceJ୑
஡భ = (I + ρଵM)ିଵ  and  J୒

஡మ = (I + ρଶN)ିଵ, we have 

x − ρଵS(x, y) ∈ (I + ρଵM)(x) and y − ρଶT(x, y) ∈ (I + ρଶN)(y). 

Therefore, 0 ∈ S(x, y) + M(x) and 0 ∈ T(x, y) + N(y). We conclude that (x, y) is a solution 

to the problem (SNVI). This completes the proof.                       ∎ 

Theorem 1 Let Hଵ and Hଶ be two real Hilbert spaces. Let M: Hଵ → 2ୌభ and N: Hଶ → 2ୌమ 

be a maximal monotone operator. Let S: Hଵ × Hଶ → Hଵ be a 𝛽ଵ-Lipschitz mapping, 𝛿ଵ-

strongly monotone mapping in a first argument and 𝛽ଶ-Lipschitz mapping in a second 

argument. Let T: Hଵ × Hଶ → Hଶ be a 𝜅ଵ-Lipschitz mapping in a first argument and a 𝜅ଶ-

Lipschitz mapping, 𝜉ଶ-strongly monotone mapping in a second argument. If there exist 

positive constants 𝜌ଵ, 𝜌ଶ > 0such that 

ඥ1 − 2ρଵδଵ + ρଵ
ଶβଵ

ଶ + ρଶκଵ < 1 and ඥ1 − 2ρଶξଶ + ρଶ
ଶκଶ

ଶ + ρଵβଶ < 1.-----------(3) 

Then, the problem (SNVI) admits a unique solution. 

Proof For any given (𝑥, 𝑦) ∈ Hଵ × Hଶ, we now define Q: Hଵ × Hଶ → Hଵ × Hଶ by Q(x, y) =

(f(x, y), g(x, y)) where  

f(x, y) = J୑
஡భ[x − ρଵS(x, y)] and g(x, y) = J୒

஡మ[y − ρଶT(x, y)]. 

 Next, we will show that the mapping Q is a contraction mapping. 
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Let (x෤, y෤) and (𝑥∗, 𝑦∗) in Hଵ × Hଶ. Since 

‖f(x෤, y෤) − f(𝑥∗, 𝑦∗)‖ = ฮJ୑
஡భ[x෤ − ρଵS(x෤, y෤)] − J୑

஡భ[𝑥∗ − ρଵS(𝑥∗, 𝑦∗)]ฮ 

≤ ‖x෤ − 𝑥∗ − ρଵ(S(x෤, y෤) − S(𝑥∗, y෤))‖ + ρଵ‖S(𝑥∗, y෤) − S(𝑥∗, 𝑦∗)‖ 

and 

‖g(x෤, y෤) − g(𝑥∗, 𝑦∗)‖ 

≤ ‖y෤ − 𝑦∗ − ρଶ(T(x෤, y෤) − T(x෤, 𝑦∗))‖ + ρଶ‖T(x෤, 𝑦∗) − T(𝑥∗, 𝑦∗)‖. 

By using the 𝛿ଵ-strongly monotone mapping and 𝛽ଵ-Lipschitz mapping in a first 

argument of the mapping S, we see that 

ฮx෤ − 𝑥∗ − ρଵ൫S(x෤, y෤) − S(𝑥∗, y෤)൯ฮ
ଶ

 

= ‖x෤ − 𝑥∗‖ଶ − 2ρଵ〈S(x෤, y෤) − S(𝑥∗, y෤), x෤ − 𝑥∗〉 + 𝜌ଵ
ଶ‖S(x෤, y෤) − S(𝑥∗, y෤)‖ଶ 

≤ (1 − 2ρଵ𝛿ଵ + 𝜌ଵ
ଶ𝛽ଵ

ଶ)‖x෤ − 𝑥∗‖ଶ----------------------(4) 

and using a 𝜅ଶ-Lipschitz mapping and 𝜉ଶ-strongly monotone mapping in a second 

argument of the mapping T, we obtain that 

ฮy෤ − y∗ − ρଶ൫T(x෤, y෤) − T(x෤, y∗)൯ฮ
ଶ

≤ (1 − 2ρଶξଶ + ρଶ
ଶκଶ

ଶ)‖y෤ − y∗‖ଶ. ------(5) 

Since S is 𝛽ଶ-Lipschitz mapping in a second argument and T is a 𝜅ଵ-Lipschitz mapping 

in a first argument, (4) and (5), we have 

‖f(x෤, y෤) − f(𝑥∗, 𝑦∗)‖ ≤ ඥ1 − 2ρଵ𝛿ଵ + 𝜌ଵ
ଶ𝛽ଵ

ଶ‖x෤ − x∗‖ + ρଵβଶ‖y෤ − y∗‖, 

‖g(x෤, y෤) − g(𝑥∗, 𝑦∗)‖ ≤ ඥ1 − 2ρଶξଶ + ρଶ
ଶκଶ

ଶ‖y෤ − y∗‖ + ρଶκଵ‖x෤ − x∗‖. 

Now, we define the norm ‖∙‖ାon Hଵ × Hଶ by  

‖(𝑥, 𝑦)‖ା = ‖𝑥‖ + ‖𝑦‖ for all (𝑥, 𝑦) ∈ Hଵ × Hଶ. 

It is easy to see that (Hଵ × Hଶ, ‖∙‖ା) is a Hilbert space, see (Suantai & Petrot, 2011; 

Suwannawit & Petrot, 2012). Then 

‖Q(x෤, y෤) − Q(x∗, y∗)‖ା = ‖f(x෤, y෤) − f(x∗, y∗)‖ + ‖g(x෤, y෤) − g(x∗, y∗)‖ 

≤ ට1 − 2ρଵδଵ + ρଵ
ଶβଵ

ଶ‖x෤ − x∗‖ + ρଵβଶ‖y෤ − y∗‖ + 

      ට1 − 2ρଶξଶ + ρଶ
ଶκଶ

ଶ‖y෤ − y∗‖ + ρଶκଵ‖x෤ − x∗‖ 

≤ k(‖x෤ − x∗‖ + ‖y෤ − y∗‖) = k‖(x෤, y෤) − (x∗, y∗)‖ା, 
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where k = 𝑚𝑎𝑥 ቄඥ1 − 2ρଵ𝛿ଵ + 𝜌ଵ
ଶ𝛽ଵ

ଶ + ρଶκଵ, ඥ1 − 2ρଶξଶ + ρଶ
ଶκଶ

ଶ + ρଵβଶቅ. 

By using (3), we have k < 1. This implies that Q is a contraction mapping. Hence there 

exists (x, y) ∈ Hଵ × Hଶ which is the unique fixed point of Q. Thus 

x = J୑
஡భ[x − ρଵS(x, y)] and y = J୒

஡మ[y − ρଶT(x, y)]. 

Therefore, by Lemma 2, (x, y) is a unique solution of the problem (SNVI). This 

completes the proof.                                                                                         ∎ 

 Next, we will introduce the resolvent equation which is equivalent to the 

problem (SNVI) as follows. Fixed (x, y) ∈ Hଵ × Hଶ and let S: Hଵ × Hଶ → Hଵand T: Hଵ × Hଶ →

Hଶ be nonlinear mappings. Let M: Hଵ → 2ୌభ and N: Hଶ → 2ୌమbe  maximal monotone 

operators. We consider the problem of finding (u, v) ∈ Hଵ × Hଶ such that 

   S(x, y) + ρଵ
ିଵR୑

஡భ(u) = 0 

    T(x, y) + ρଶ
ିଵR୒

஡మ(v) = 0       ----------------------(RESNVI) 

for some positive constants ρଵandρଶ and R୑
஡

= I − J୑
஡  where I is an identity operator 

and J୑
஡  is defined in Definition 4. 

Lemma 3 Let Hଵ and Hଶ be two real Hilbert spaces. Let S: Hଵ × Hଶ → Hଵ and T: Hଵ ×

Hଶ → Hଶ be nonlinear mappings. Let M: Hଵ → 2ୌభ and N: Hଶ → 2ୌమ be maximal monotone 

operators. Then, (x, y) ∈ Hଵ × Hଶ is a solution of (SVNI) if and only if (u, v) ∈ Hଵ × Hଶ is a 

solution of (RESNVI) with  

x = J୑
஡భ[u] and y = J୒

஡మ[v] 

with u =  x − ρଵS(x, y) and v =  y − ρଶT(x, y) and ρଵ, ρଶ are positive constants. 

Proof(⇒) Assume that (x, y) ∈ H1 × H2 is a solution of (SVNI). By Lemma 2, we 

have 

x = J୑
஡భ[x − ρଵS(x, y)]and y = J୒

஡మ[y − ρଶT(x, y)]. 

Since R୑
஡భ = I − J୑

஡భ , we have 

R୑
஡భ൫x − ρଵS(x, y)൯ = ൫I − J୑

஡భ൯൫x − ρଵS(x, y)൯ = −ρଵS(x, y). 

This implies that S(x, y) + ρଵ
ିଵR୑

஡భ(u) = 0, where u =  x − ρଵS(x, y). In similarly way, 

we obtain that T(x, y) + ρଶ
ିଵR୒

஡మ(v) = 0, where v =  y − ρଶT(x, y). 



Rajabhat J. Sci. Humanit. Soc. Sci. 20(2): 236-247, 2019 

243 

 

(⇐)Conversely, fixed (x, y) ∈ Hଵ × Hଶ and (u, v) is a solution of (RESNVI), that is, 

S(x, y) + ρଵ
ିଵR୑

஡భ(u) = 0 

T(x, y) + ρଶ
ିଵR୒

஡మ(v) = 0. 

Since R୑
஡భ = I − J୑

஡భ and R୒
஡మ = I − J୒

஡మ , we have 

x = J୑
஡భ(u) and y = J୒

஡మ(v). 

So, x = J୑
஡భ(x − ρଵS(x, y)) and y = J୒

஡మ( y − ρଶT(x, y)). By Lemma 2, we have 

(x, y) is a solution of the problem (SNVI). This completes the proof.                     ∎ 

 Now, we will present the resolvent dynamical system of the system of 

nonlinear variational inclusions. By Lemma 3, we have if (x, y) ∈ Hଵ × Hଶis a 

solution of the problem (SNVI) then 

S(x, y) + ρଵ
ିଵR୑

஡భ(u) = 0 and T(x, y) + ρଶ
ିଵR୒

஡మ(v) = 0. 

Since R୑
஡

= I − J୑
஡ and R୒

஡మ = I − J୒
஡మ , we have 

x − J୑
஡భ൫x − ρଵS(x, y)൯ = 0 and y − J୒

஡మ(y − ρଶT(x, y)) = 0. 

So, we suggest the resolvent dynamical system associate with the system of nonlinear 

variational inclusion: for any real number t, 

dx(t)

dt
=  λ ቄJ୑

஡భ ቀx(t) − ρଵS൫x(t), y(t)൯ቁ − x(t)ቅ 

 

                                          
ୢ୷(୲)

ୢ୲
 =  γ൛J୒

஡మ(y(t) − ρଶT(x(t), y(t))) − y(t)ൟ     -----------(RDSSNVI) 
 

with x(t଴) = x଴ ∈ Hଵ and y(t଴) = y଴ ∈ Hଶ and λ, γ are positive constants with a 

positive real number t଴. 

 Next, we will propose the existence theorem of the problem (RDSSNVI). 

Theorem 2 Assume that all of the assumption of Theorem 1 hold. Then, for each 

(x଴, y଴) ∈ Hଵ × Hଶ, there exists a unique continuous solution(x(t), y(t)) of the 

problem (RDSSNVI) with x(t଴) = x଴ and y(t଴) = y଴ over [t଴, ∞). 

Proof Let F: Hଵ × Hଶ → Hଵ × Hଶ define by F(x(t), y(t)) = (q൫x(t), y(t)൯, p(x(t), y(t))) 

where 

q൫x(t), y(t)൯ = λ൛J୑
஡భ൫x(t) − ρଵS(x(t), y(t))൯ − x(t)ൟ 
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p(x(t), y(t)) = γ൛J୒
஡మ(y(t) − ρଶT(x(t), y(t))) − y(t)ൟ 

for all (x(t), y(t)) ∈ Hଵ × Hଶ . Let (xത, yത), (x′, y′) ∈ Hଵ × Hଶ where (xത, yത) = (xത(t), yത(t)) and 

(x′, y′) = (x′(t), y(t)′). We see that 

‖F(xത, yത) − F(x′, y′)‖ା 

= λฮJ୑
஡భ൫xത − ρଵS(xത, yത)൯ − xത − J୑

஡భ൫xᇱ − ρଵS(xᇱ, yᇱ)൯ + xᇱฮ 

    +γฮJ୒
஡మ(yത − ρଶT(xത, yത)) − yത − J୒

஡మ(y′ − ρଶT(x′, y′)) + y′ฮ 

≤ λ{‖xത − xᇱ‖ + ρଵ‖S(xᇱ, yᇱ) − S(xത, yത)‖ + ‖xᇱ − xത‖} 

    +γ{‖yത − yᇱ‖ + ρଶ‖T(x′, y′) − T(xത, yത)‖ + ‖y′ − yത‖} 

≤ λ{‖xത − xᇱ‖ + ρଵβଶ‖yᇱ − yത‖ + ρଵβଵ‖xᇱ − xത‖ + ‖xᇱ − xത‖} 

    +γ{‖yത − yᇱ‖ + ρଶκଶ‖yᇱ − yത‖ + ρଶκଵ‖xᇱ − xത‖ + ‖y′ − yത‖} 

≤ Δ(2 + ρβ + ρκ)‖(xത, yത) − (xᇱ, yᇱ)‖ା 

where Δ = max{λ, γ}, ρ = max{ρଵ, ρଶ}, κ = max{κଵ, κଶ} and β = max{βଵ, βଶ}. Thus, F is 

a Lipschitz continuous on ‖∙‖ା. Hence, for each (𝑥଴, 𝑦଴) ∈ Hଵ × Hଶ, there exists a 

unique continuous solution (x(t), y(t)) of the problem (RDSSNVI) defined in a initial 

t଴ ≤ t ≤  Γ with the initial condition x(t଴) = x଴ and y(t଴) = y଴. 

 Next, let [t଴, Γ)be its maximal interval of existence, we now show that Γ = ∞. 

Since the assumption of Theorem 2, we have the problem (SNVI) has a unique 

solution, that is, (x∗, y∗) ∈ Hଵ × Hଶ which 

x∗ = J୑
஡భ(x∗ − ρଵS(x∗, y∗)) and y∗ = J୒

஡మ(y∗ − ρଶT(x∗, y∗)). 

So, we let (x, y) ∈ Hଵ × Hଶ where (x, y) = (x(t), y(t)). We obtain that 

‖F(x, y)‖ା = ‖q(x, y)‖ + ‖p(x, y)‖ 

≤ ∆൛ฮJ୑
஡భ൫x − ρଵS(x, y)൯ − xฮ + ฮJ୒

஡మ(y − ρଶT(x, y)) − yฮൟ 

≤ ∆

⎩
⎪
⎨

⎪
⎧

ฮJ୑
஡భ൫x − ρଵS(x, y)൯ − J୑

஡భ൫x∗ − ρଵS(x∗, y∗)൯ฮ

+ฮJ୑
஡భ൫x∗ − ρଵS(x∗, y∗)൯ − x∗ฮ + ‖x∗ − x‖ +

ฮJ୒
஡మ൫y − ρଶT(x, y)൯ − J୒

஡మ൫y∗ − ρଶT(x∗, y∗)൯ฮ

+ฮJ୒
஡మ൫y∗ − ρଶT(x∗, y∗)൯ − y∗ฮ + ‖y∗ − y‖ ⎭

⎪
⎬

⎪
⎫

 

= ∆ ൜
2‖x − x∗‖ + ρଵβଶ‖y∗ − y‖ + ρଵβଵ‖x − x∗‖

+2‖y − y∗‖ + ρଶκଶ‖y∗ − y‖ + ρଶκଵ‖x∗ − x‖
ൠ 

≤ ∆(2 + ρβ + ρκ){‖x − x∗‖ + ‖y − y∗‖} 

≤ ∆(2 + ρβ + ρκ){‖x‖ + ‖x∗‖ + ‖y‖ + ‖y∗‖} 

= ∆(2 + ρβ + ρκ)‖(x, y)‖ା + ∆(2 + ρβ + ρκ)‖(x∗, y∗)‖ା. 



Rajabhat J. Sci. Humanit. Soc. Sci. 20(2): 236-247, 2019 

245 

 

Hence,  

‖(x(t), y(t))‖ା ≤ ‖(x(t଴), y(t଴))‖ା + න‖F(x(s), y(s))‖ା

௧

୲బ

ds 

= ฮ൫x(t଴), y(t଴)൯ฮ
ା

+ kଵ(t − t଴)  + kଶ ∫ ฮ൫x(s), y(s)൯ฮ
ା୲

୲బ
ds, 

where, kଵ = ∆(2 + ρβ + ρκ)‖(x∗, y∗)‖ା and kଶ = ∆(2 + ρβ + ρκ). By 

Gronwall's Lemma, we get 

‖(x(t), y(t))‖ା ≤ ቄฮ൫x(t଴), y(t଴)൯ฮ
ା

+ kଵ(t − t଴)ቅ 𝑒୩మ(୲ି୲బ). 

Thus, we conclude that for each (x଴, y଴) ∈ Hଵ × Hଶ there exists a unique solution 

(x(t), y(t)) ∈ Hଵ × Hଶ of the problem (RDSSNVI) over [t଴, ∞). This completes the proof.                                                                                                  

∎ 

 

Conclusion 

 In this work, we study the problem of the system of variational inclusion which 

was studied by R. U. Verma (Verma, 2004). We prove the existence solution of such 

problem by using resolvent operator and present the resolvent equation which is 

equivalent to the problem (SNVI) and prove that the solution of the resolvent equation 

is equivalent to the solution of the problem (SNVI). Later, we use such resolvent 

equation for introducing the resolvent dynamical system associate with the system of 

nonlinear variational inclusion and consider the existence solution of such resolvent 

dynamical system. We desire that the results which presented here will be useful and 

valuable for researchers who study in the fields of variational inclusion. 
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