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Abstract

The credit card business in Thailand continues to show steady erowth, with
spending projected to increase by an average of 8-9 percent annually during 2024-2025.
However, the transaction network still faces frequent disruptions, which directly affect
users in terms of convenience, trust, and operational efficiency. Existing monitoring tools
cannot provide timely responses, resulting in recurring system malfunctions. This study
aims to develop an appropriate machine learning model for classifying abnormal events
in the credit card Electronic Data Capture (EDC) network. To achieve this, historical event
records were combined with log files from EDC devices, totaling 5,011 hours of
operational data. The algorithms considered included Decision Tree, Random Forest, and
K-Nearest Neighbors. The performance evaluation revealed that the Random Forest
algorithm achieved the best results, with accuracy, precision, recall, and overall efficiency
of 99.96%, 99.90%, 99.90%, and 99.90%, respectively. The results indicate that the
Random Forest algorithm is the most suitable method for developing a prototype tool
to detect anomalies in credit card systems within the EDC network, thereby enhancing

the stability and reliability of financial transactions.

Keywords: machine learning, anomaly detection, log file, EDC network
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Tudagduuinnssunisnisiuveslandnisiuf suwdas wagimuiag sl

a

TngldSunsetuindounnnaluladfdnauvuininsslan dwalfAnuinisnianisdufia
(digital financial service) 3Uuuuluny 9 Fu 1wy nsudnIunasta (e-wallet) analunlnag
(digital currencies) wagn15915813uN1981Ennsetind (e-payment) [1] Insianizag1ads
nst1seRumedidnnseding Jsieifuszuuiifirnuddnydenisissdinlugaddsia iesan
WaeligInssunienisiiunasianssumaasegiasnidululdsgisazain siass wag
fivszansam SnvadsdiunuimddylunisenseduganmiinuesUszevu waziasuaiig
wiesnnliiusruuUImMssan1sn1siunsadwesUsema uenand niswaunlaseadag
fugruvesszuunstisy Sumnedidnnsetind neldunugnsmansnisiauilasiaiisiiugu
S2UUNITT15IULIAR (national e-payment master plan) §aduiladedfyiidrediuia
auannsalunisutsduresdszina valusuauaiansalunisutadu (competitiveness)
ANgIN-18Tun15UsENaUTIAA (ease of doing business) warAinsHwLINYYE (human
development index) [2]

$unsldUasasanlssuanuisuiuiusgesioies iesmnianuazaainauie
ANUNTndrANAZLUULAZ AT NLAY YIuUTMITnTsLaduEn wasdwnsonAulusludunse
Tolauativausing 9 [3] Teyaainsuinsuvisdsemalneseydn Tl 2558 dgtednsiasindiuin
21.8 d1ulu [4] Feasvouliiiuiansidivlavesnisldnsiasinegeraiies agrslsfnnu
mﬂ%&mﬁtﬂuqﬁu Taglamizlutaananiadidysing q Afgsnssudmauann Svilissuy
VaEiesnn waziflefinmnuinund seuvagngavinauliannsavihauldegasied og
‘ﬂzgmﬁﬁaLf]umamaei"ﬁzgﬁﬁaﬂﬁﬂmm?wﬁﬁyﬁum‘a‘u"%mif{’]’mmiamiiaummﬁxwﬂmmiam
eluiugeniuniuareniaud sniedsaiouiinnusndulunsiuneluladaelnslidun
redinszideyasinuiudon (log files) domanmauazudladymanulsiadesiiiniu
BRANUIRERUGRU

adndlsfinu wiarfinnsudmssanisszuudnsiashatedugenduisuasensauns
wigansmugmanuliiadesvesszuu Tnglawiglutiananiai dnisviigsnssudiuauunn
szuvsinvgavzinuaylianansaliuinmsliniuund andeyaaiinuintisnafissuumalulad
ansaumatados (downtime) denansynusonislviunisvessunmsmdsd fanadogad
afaaz 2 Falue 15 Wit [5] Jymiddrunidainendosiiavenniesiiensinaouszun
(monitoring tool) 48 dlaianunsaneuauesléviuviaei 1iesaniadeailefldlutlagdusj sy
N139539aUaAnUrYesUNIallaeTIN LYY NMIYINUYEITY nilgAuTn wagiuiidniiy
oya uilildAnneiisdnanuiiuden (6] ilemanisainnuiinundlddami deualiin
sruuwaluladdadasdunaenuuaznsgnusedlduinisiuanin

Fasuni dusuameddnlunsudledgmiindnundnedu AaNsUsEYNAlTULIAR
nMsBouiveanios dadagiuFuinsUszendlinmaFoudvesaiownlflunusugaamnssy
nsidukarnssuiasInndy [7] Wediudnenwlunisasadeuuasainnisalaudaung
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Tuszuumanisidu nemadanisisoudveaas ssanunsathuniiasevideyaainuinig
yansiuiinainuans [8] Salinmsdieneiuaznisaansaifienuidugunniu naonau
aduayunsuwusaznsindulaldegrsliusz@nsaim (9] MnUssiiiulymduaussaus
yosszuvimsiasandiSanaaiiosnn wardnenmwsinisiSouiveaadssiianansatasudly
Jymld eAded Taadunisysannsisaesuadaddaetu Tnstiaueniswaun
wuuasafionsiaaeuanuinunivesszuuingnsanlunieisddd deisnsiseuives
1309 1 pUTUUTsAuTsausvessruUli Auaiosiudu [10] 92uderasanienia
nMavgamzinvesszuy daasthlgnisaduenudestusedlduinsldededivssansnm il
dane3fiunsisouiveaiasithuussendlissnause dulsiiindula (decision tree) Undy
(random forest) wazifl outulndfiqn (Knearest neighbors) Ingagyinisiiseuifisunas
UspiiulszAvBnmaeauuusaesia 3 Sane3iiu faeriaugnies (accuracy) AL
(precision) A1AUATUNIU (recall) wazAUszansnmlaesiu (F-measure) [11, 12]

WUILENA

1. WowSsuiisuasUszdiulssansarmuuusiassnisasisgeunnuiinuniives
STUUURSLASARLULAS0UUDRT é’w‘i%ﬂﬁﬁauimam.ﬂ%'m

2. iilemsnuusaesfivinzdmsuihluiaunduededlonldlunsasiaeuniu
AnUnAvesszuutinsiasinluaietneddd smedsnsisouiveaaios

A5Afiun15Ie

v
o

JUADUITAMAUNTIVYUTENBUAIY 4 VUMDY AININA 1

Collected Data Preparing Data Modeling Evaluation
) 10-fold Cross Validation

Feature
Extraction Training

- - Decision Tree Normal Accuracy
| i P
Collected B gat = —» Data - Random Forest Precision
Data a Testing - k-Nearest Recall
- Variable Data Neighbors Abnormal F-Measure

Dedlaration
I |

A4

AN 1 TUMBUNITADUNITINE

1. m39uTudaya (collected data)

foyaillflumaidoadsdidudoyauiifenldanngunasiiniorisvesszuuiinaasin
TuATeve8AT Iuszeznamea 5,014 $alus FeUsznouldae 7 AauALUR Faii (1) $1u7u
$1811511 (2) WIWTIEN1508N (3) WIAYDITBYAV YT (4) VWInvesteyavieen (5) F1uu
nadeurodss (6) Sruunsdendelidnia (7) Swunsideuseianun doyadnan
g futeyammdntosmessruuiifistulunanfeatu snduldimsiathediiy
an1uen19uYeIszuY (labeling) Winuyadeya lnsuutesnidu 2 nqu laun anusund
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(normal) 97U 4,048 Flug n3eAmdu 80.70% wazan1urn13veaIuRAnUNf (abnormal)
F1uau 963 Falue wieAmdy 19.30% ndwiunsruunsdnidenuaziauazeindeya
I§dayatadu 5011 unr Andeuldidudonadreddunistauuuuiiasanisniaaey
ANLRAUNR

2. maiseudaya (preparing data)

2.1 n3fnidendoya (feature extraction) 9ndoyaiildanuiludenvesgunss]
w3eegnauiunsAntiemiuaniuzn1siau sudmnaudnvaeinaduaniuen1sinau
Y8353UU (correlation analysis) FsUsznausae 7 Audnwariy 110y (target) Loy
eaziBeagadnuvazithinauuuiiaosdilunids wanddfnimed 1

A15197 1 18azBunnuanYENtNEIIHUUIIReS

a0 Joquanuny wlafuUs A183U"Y
1 9uusenIsd Integer ai’wmuiwms%aagaﬁiﬁ%’umﬂizwﬂizmama
2 9IUIUTIHAITDN Integer ﬁi’wmuﬁ’]ami%aﬂaﬁﬁﬁiﬂﬁqmmzw
Useuiana

3 WInvesleyav i Integer  wwAvestoyaTildiuaInTEULUsTINANE

4 wnavesdayaviean nteger  vuavestoyatidslufisuuUsyanana

5 fnunsideusedusa Integer SN TousefUsTULYSTIaRaTidNSa

6 swnunsideussl Integer SN TousefUsTULUSEIaRaTlldSa
d159

7 dwaumsdewsiotiovan Integer  s1waumsideuseroiun

8  @n1uUENITNNIUTeY Binomial @0 UZNITYINNUVDITTUL:
53U ()W) A1579UUNF (normal)

939 NSYNURAAUNG (abnormal)

2.2 M3viauazeIndeya (cleansing data) 3nn1snsIvaeudeyauiuden
wuIdu1aunIi Usnoudiea fivinmie (missing values) §101adenasonugndosuay
AwaAysalveaUUansiiaun andeyafiiusinlinuing 3 un Mdunuanulsiauysal
Fvinisiaunituesnifiesnmauninvesedeyaliiianuauysal auvdedoya 5011 um
lddmunailulssnanauayiinsesiseld

2.3 msimunr1iIuUs (variable declaration) degailsanuiludonidudoya
\Feian (integen) luvaz o afiviinsiadeiiduaniugn1svina1uresszuy (labe)
gnivualiidudauusuuuninia (binominal variable) Insuuseanilu 2 A1 laun aaus
nM3auUnd uazanuznishauAaund seiifelianunsoun g dudwdsidnane
(target variable) TunszuaunsinuunUszavlaegnamngau
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3. NISWAILILUUTIIABY (modeling) NIz UIUNITHAUILUUTIa0IUTENDUA Y
2 nsvvIuMsten fil
3.1 n1spanLUUNTATIMULTIaes uddsildeenuuunsairsuuudiaesiag
nsuladeyalddmsulnuazdmsunaasy 9:1 ddldudnnsmaasunuuleiny 10 61y
(10-fold cross validation) inldeyannadiuszgnaduiduteyadmsulnuazdoyadmsy
YAABY MWAUATU 10 50U 89 10-fold LuAfmngantusuuteyalunuided dofves
wafiaiife Toyanniazgnlilunsiinuasvnaey uardsisanaruioudemostoyaldd (13
ansnesuIsmMainureamsnaasuluuly iy 10 dau lefsnmii 2

training set testing set
TEUH 1 2|3 |a |5 |6 |7 |8 |9 |10 1
TEUH 2 1 |3 |a |5 e |7 |8 |9 |10 2
TEUH 3 1|2 a]s|a |7 ]2 |9 |10 3
TauUH 4 1|2 |35 |a |7 ]2 |9 |10 4
TEUH 5 123 |a e |7 |8 ]9 |10 5
TEUH 6 1|2 |3 a5 |78 ]9 |10 f
TEUH 7 1|2 |3 |45 |68 ]9 |10 T
TEUH 8 123 |a |5 e |7 ]9 |10 &
TauUH 9 1|2 |34 |5 |6 |7 |8 |10 g
sBUf 10 1234|567 |89 10

AN 2 MsuUstayauuy 10-fold cross validation

3.2 MsauILULTIaes uideilavssendlddaneiiiunsieuiveunies
wuuifaeu taun danesfiudulddedula danesfiudndy wazdaneifiuioutulnddian

q
aaa

lunswauiuuTaesdmsunsivaauauinUnivesginssudnsiasinluniounednd
Tngadunsiiulusunsy RapidMiner 714 3 8ana39iu uanslananind 3
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Process
Retrieve Data Set Role Multiply Cross validation Apply Model (2)
)inp out ma T e inp out e1a mod mod lab L
c . . . - . h s o unl L ] res
out ) tes|) =g
o) D o
o xn peD 4
UnvvaUa = 4
Cross validation (2)  Apply Model (s) Y
Anuad g w gp medh—qmd / =4
e1a unl " med ‘
Py a ()] ves
#UnvaUa
2 /‘ per)
per )
Auldiiagla
maximal depth : 4 ‘I Cross Validation (3) Apply Model (6)
minimal leaf size : 1 \1 — 3 — - lab |
Number 'ihfh-' e wl * med
» o number of trees : 50 i )
231N UUINRNDS of fold :
maximal depth: 4 o '
[ mewlﬂﬂnﬁﬂ per[)

NN 3 NMSWIUADLNENANUTEANENINLUUTIEDIY 3 dane39iu aielusinsu RapidMiner

duldidadule Wusanesfiumsisouveandosuuuiifaeu (supervise learning)
Afeullunuduunuszsian (cassification) Jadladieldnaruazifusngruvosiigy [14]
Tngndnnisviauazyinisuysteyasenidunqueesnuiioulaiiimua sunisdndule
Tudnuay “61-uda” (-Then) $1luiFos 1 aulduadnsaarine nisadreiuliidnaulaends

Handuinguseasd (objective function) wu ALBUINIY (entropy) WseARYHAl (Gini index)
Faanunsaesunelansaunisn 1

Gini(t) =1— )., pi® (1)

Tnedi

t e Inuafidesnsiam Gini

N fe Swueananmuslulundy

Pi fie dadauvestoyalulrundieglunaad i
(FrauasBnaad | msses LA nmualuliu)

msnaukuuIaedagltanesiusuldindulatinsiruaainisidwessnuiu
dauda (maximal depth) wagd1uaulnun (minimal leaf size) Mndeyafitanldlunuide
WUI A En e raNAesuIud I UT UYL ¢ wazsiuauTuuawingu 1 Tegldua
ANTHALIMUUIADT UARIFIN15199 2
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A15199 2 Han sk UUIaedlneldanasTuAuldsndula

W WL AANNGNABY  AlAduKingY  ArAnaAsudal  AUsEEVEnw

fduty  Tum  (zudlivnd)  (ssuubivn®)  (szuulsiund) Tngsau
1 1 80.78 0 0 0

2 1 99.88 99.90 99.48 99.69

3 1 99.84 99.69 99.48 99.58

4 1 99.94 99.79 99.90 99.84

5 1 99.94 99.79 99.90 99.84

6 1 99.94 99.79 99.90 99.84
Ungu (Jusanesiiuiimundesenandaneiiudulsidadula Tnedunissm
waneduldindula (ensemble leaming) wudniiviane 9 nuidelddanesfinvrdulunisdiwun

v
v el [ [

Toyaudilanausednsaings (15 Unduldisnimmaasududeyayaieiunay q Ass

Y
N v v

(instance) si1unsdui g 19U UTNTUNUTA (bootstrap sampling) ilassyadeyadmsy
nsinluusiazsiuldl veilunsadefuliusasduarduideniaomeamdnuazuisdiu (random
subset of features) uldlunisutstoyaiusasivun dwalvisuliudazduiianuunnsiaiu
dmdumsvhuwena ssutassamadnsnndulivammadidedu uarlunissuunussan
Azl slmadestnsun (majority voting) Lﬁaﬁaﬂﬂmaﬁﬁmﬂmmqﬂqm
nswaukuuiaetlaglidanaiiudidy §3deldnvuadnisidmesdiuiu
gt (maximal depth) ity 4 adurilinadniiiaavossaneimduanFudu wui
Srunuliillinafiianiniu 50 nansWauUUSIa0 wansiaanaei 3

M19199 3 wan1smkuuaadeslddanasviuiigy

31U MUY AR AR AR fAn
auld fduty andeq wsiugn asufiou  UseBnSaw
(szuuldund) (szuulidun®)  (szuuldun®)  Teesau
25 4 99.92 99.79 99.79 99.79
50 4 99.96 99.90 99.90 99.90
75 4 99.94 99.79 99.90 99.84
100 4 99.94 99.79 99.90 99.84
125 4 99.94 99.79 99.90 99.84
150 4 99.94 99.79 99.90 99.84
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weutilndilgn 1usaneiiunsFeudveaniessuuuifaoulungunisdiuun
Usziam alsiandsavsamgadeldfumaianismeaeunuuleiny (kfold cross validation)
[16] Inewdnnishaudenismdegedoyaidaalndidsaiudeyalmininigaduiy
k §20819 (neighbors) wdthdeyamariualdlunsdnduladelildnadng nssuiunis
Auafenisiasey st eyalnfudeyaismualuyadeyailn (training data)
MndudonfogaiilndiAsiignsiuiu k fogs warlumssuunUssamagdusinunaa
94 k faegneiiu neudlawdonamaiunnguiniiandunadnsaaine annsnesuield
Feaunsd 2

dist(x,y) = JXr,(x; — y:)? ()
Tnei
dist(xy) fie szezineseninadeyafiegne x fufiet
n Ao ﬁwuauamﬁﬂwmsﬁgwmsuaﬁayaﬁaaEJN
X fio Anudnunzif | vesteyamegng x uay
y Ao A Snuauzia | UBNIGHGIRLERSRY

nsvawkuudaedaglddanasiudrduinisivuar1msdmesiuiu
91989919139 [16] Ingldnanisimuiwuudnass fnn9199 4

A15199 4 Han sHaUILUUIaedneldanashutautulnanan

Ll

3w Cross AIANYNADY AR A1AY A
k validation  (szuulaiun®) saiugn AU Useansnw
(szuuldun®)  (szuulsiuni) a5y
1 10 99.92 99.79 99.79 99.79
3 10 99.86 99.69 99.58 99.64
5 10 99.90 99.79 99.69 99.74
7 10 99.84 99.58 99.58 99.58

4. nM5inUsEAnSnImLUUIIaaY (evaluation)
nmsUssifiulszdvBamussiuudiaedusassane3iuild lnemaiieuiiisudni
wuuSaewhusiuRadNS AT uaT wazuanslugUuuUIesTisendnan3ndduay
(confusion matrix) A13130Ina1IYe TR IUNINTImTe AN NdBdluNsTILUNLAaT AR A
paanTuaNInszyUsTanvsteRamaaiiinuls Tnglusruidedimusliaaranisyiey
AnuUnd (abnormal) tlunguiti{iseliaauauls (positive case) #msusUnuumawning
Fuaunandldidamsadi 5
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M15199 5 WnsSngEuaEy

pred. \ true true abnormal true normal
pred. abnormal (Postive Case) TP FP
pred. normal FN TN

Tned

TP fe mﬁiﬂmﬂimﬁmwgﬂﬁaa (Foyansviuiiaun® vugdnnsinuRauni)
TN fip ﬁﬂﬁiﬂmmuﬁmwgﬂﬁm (Payansviuunid vinegdnsinnuung)

FP Ao ?aﬁiﬂmmimﬁmwlﬁgﬂﬁaq (Poyan1svinuiiaung iuieInnsvineuung)
FN fie Asfilusunsuvinuneliigndfes (eyansviauund simneinmsyhaninuni)

A1ANgNABY (accuracy) Wunisusuidulasgnmsuinfiaianugnievesnand
AMSYNURAUNR (@bnormal) a5unelaseaunisi 3

TP+TN

Accur r =
ccuracy (abnormal) TPTTNIFPIFN

(3)

AMA1UWNINET (precision) WUUTNaeidiAIAINLI UL vanefis nan1sYiug
psatuArAU LIS waIRaIanIsinURAUNG (abnormal) aSunelansaunisi 4

TP

Precisi T =
ecision (abnormal) TPiFP

(@)

ANAUATUAIY (recall) TanwarAa8iuUAUAIANULLUEN LAAZUITAIEAINTIUY

v
=

AARTUITI TRAIANNATUAIUYBIAANENTISYNURAUNG (@bnormal) a5ulelasaaunisi 5

TP
TP+FN

Recall (abnormal) = 5)

AUszANS A mlaes9u (F-measure) LuA 17l Tannuudusrvesluina tnadu
ANSMANLAABLUY harmonic mean 51319AIANLLUEN wazAAuATUSIY aSurelae
aunnsi 6

2 x (Precision x Recall)

F — measure = — (6)
(Precision+Recall)
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NAN1538

Han15338lun1sUTBduUsEAnS nnisnunteyanisvinauvesseuudnLAsin
lure1e8a% Tdyndoyadnuiu 5,011 ¥a Useneaumennanuue (feature) 117U 8 Fauys
wavAala (class) 91uaU 2 Useian Laun nqudeyaund waznqudeyaliund lagldis
naveaoukuUleiny 10 @ dwsunanssuundeyains 3 Sanedfiu daeamisdmes
Amnzay Winadwsaunaad 6

M3197 6 wan1suunteyalagliisnismaaauwuuleiviu 10 @ (10-fold Cross Validation)

duldinnaula accuracy: 99.94%

True abnormal True normal Class precision
Pred. abnormal 962 2 99.79%
Pred. normal 1 4,046 99.98%
Class recall 99.90% 99.95%

Ungu accuracy: 99.96%

True abnormal True normal Class precision
Pred. abnormal 962 1 99.90%
Pred. normal 1 4,047 99.98%
Class recall 99.90% 99.98%

waultulndngn accuracy: 99.92%

True abnormal True normal Class precision
Pred. abnormal 961 2 99.79%
Pred. normal 2 4,046 99.95%
Class recall 99.79% 99.95%

21NM157971 6 NUIUVUTIABsiaisandanesfiutidy daugndeslunisiuiedn
szuuiieunsnndigaiesenas 99.96 AAmwiug3oras 99.90 MmauAsUiuFeray 99.90
wazAUszansnmlnesiuiosay 99.95 sesawndudanesiiuduliiiedula daiugneadly
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