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Abstract 

An adiabatic temperature change of magnetocaloric material is an important parameter required in an active magnetic 

regenerator modeling. In this study, the adiabatic temperature change of Gadolinium was modeled by using artificial neural network. 
The adiabatic temperature changes were found at different magnetic inductions and magnetic material temperatures by means of 

WDS ( Weiss-Debye-Sommerfeld)  method.  These data were applied to train a multilayer neural network with backpropagation 

algorithm.  Artificial neural network with one hidden layer was chosen and the number of neurons was varied in training process 

until its mean square error (MSE) is lower than 10-6. From the training result, the optimum number of neurons in the hidden layer is 

16. Untrained data were used to test the optimum structure. It is found that MSE of testing is 4.46 10-5. The weights and biases 

obtained from the optimum structure were used to model the adiabatic temperature change.  Finally, an example code for the 

adiabatic temperature change calculation based on the weights and biases was presented as a guide for application.  
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1. INTRODUCTION 

Magnetic refrigeration (MR) is an emerging 

technology without use of ozone depleting gases. The 

working concept of MR is based on the magnetocaloric 

effect (MCE) of magnetocaloric material, for example 

Gadolinium (Gd). MCE was discovered by Warburg in 

1881 [1]. In 1976, Brown built the first magnetic heat 

pump operating at room temperature by applying 

magnetic induction of 7 Tesla to Gd [2]. Magnetocaloric 

effect can be simply explained as an adiabatic reversible 

change of magnetic material temperature under the 

variation of magnetic field. An increase of magnetic 

field applied to magnetic material causes a temperature 

increase in material. If the magnetic material is cooled 

down to the surrounding temperature, removing 

magnetic field can cause the temperature of magnetic 

material dropped below the surrounding temperature. 

Magnetic refrigeration at room temperature has been 

interested by many researchers [ 1-4] .  Active magnetic 

regenerator (AMR) , one of the magnetic refrigerator 

designs, consists of a magnetocaloric material traversed 

by a fluid which flows from the cold end to the hot end 

of the regenerator [ 5] .  To develop an AMR prototype, 

numerical modeling of the system is useful, because it 

saves budget and time for optimizing design under 

various operating conditions. Several AMR models have 

been published in the literatures [ 6-13] .  Since the 

magnetocaloric properties of Gd are widely published, 

Gd has become the reference magnetocaloric material in 

the scientific community.  Then, in both numerical and 

experimental studies of AMR, Gd has been often used. 

Presenting MCE of magnetocaloric material in the 

model, this is an important step which is quite complex.  

In literatures, the MCE can be considered in the model 

by two approaches.  The first one is using derivative of 

thermodynamic property of the magnetocaloric material, 

referred as built-in method [9]. Researches using built-in 

method have been found in [5, 7, 10, 11].  The second 

method is applying adiabatic temperature change (
ad

T ) 

directly into the model, called discrete method [12, 15]. 

Nielsen et al. [9] reported that the discrete method is the 

simplest and most straightforward way, while the built-

in method requires details and numerically differentiable 

data of magnetization and specific heat as function of 

both temperature and magnetic field.  Use of the 

adiabatic temperature change in magnetic refrigerator 

model can be found in [6, 8, 12, 15].  

To find the adiabatic temperature change value, 

WDS (Weiss-Debye-Sommerfeld) method, explained in 

the next section, is usually performed.  However, WDS 

method significantly consumes time and computer 

resources. Most of AMR models are often developed by 

finite difference method.  Calculation of adiabatic 

temperature changes in all nodes can cause large 

computational delay.  The better way to find the 

adiabatic temperature change is using the adiabatic 

temperature change equation which is formed as a 

function of magnetic induction, B , ( or magnetic field 

strength, H  depending on the information that user 

has) and magnetic material temperature.  

Siddikov et al.  [6] presented the adiabatic 

temperature change equation of Gd by using the least-

squares fitting technique and experimental 

measurements.  In other words, the least square 

technique they applied requires some constants, 

obtained from numerical experiments.  However, the 

experimental data used to fit the equation are not shown 

in their published paper. Furthermore, after further 

investigated by the authors, it is found that, at some 

magnetic inductions, their equation gives unreasonable 

values of the adiabatic temperature change.  

Artificial neural network or neural network is a 

technique widely used to mimic properties of material, 

[ 16- 18] .  The aim of this work is to develop a 

mathematical model of the adiabatic temperature change 

related to magnetic induction and magnetic material 

temperature for Gd by means of neural network. In this 
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work, we are interested to use the WDS method to find 

the adiabatic temperature changes of Gd. The data 

obtained from WDS method are adopted to train the 

neural network in order to generate a mathematical 

model for the adiabatic temperature change of Gd, 

relating to the magnetic induction and the magnetic 

material temperature. 

The developed adiabatic temperature change model 

should be simple to construct a computer program, 

because it is often used in AMR model.  In this paper, 

the MCE is discussed and the WDS method is shown in 

section 2.  Then, the calculated adiabatic temperature 

changes at different magnetic inductions and material 

temperatures are obtained.  In section 3, the neural 

network method, used to find the relationship between 

magnetic induction, metrical temperature and the 

adiabatic temperature change, is discussed.  The results 

of neural network training and testing are shown. 

Finally, an example code for computing the adiabatic 

temperature change is presented. 

 

2. SIMULATION OF THE MAGNETOCALORIC EFFECT 

In a numerical study of AMR, the adiabatic 

temperature change is one of the most important 

parameters needed to be known. Especially, in the AMR 

model called the discrete method, the magnetocaloric 

effect in the model is to apply the adiabatic temperature 

to the solid during the magnetization and 

demagnetization periods directly [ 9] .  To find the 

adiabatic temperature change, WDS model is often used. 

However, before WDS model is described, the 

magnetocaloric effect should be further explained. 

The temperature-total entropy diagram of magnetic 

material is shown in Fig.1. At constant pressure, the 

entropy of magnetic material is a function of magnetic 

field strength, H  ( or magnetic induction, B , 

depending on the parameter wanted to present) , and 

temperature, T  or ,S H T .  For initial temperature of 

o
T  and magnetic field strength of 

o
H , the total entropy 

of magnetic material is ,
o o o

S H T .  If the applied 

magnetic field strength is changed to 
1

H  with 

adiabatically reversible process, the total entropy of 

magnetic material remains constant or 
1 o

S S . 

Therefore, the new equilibrium state is at 1 1 1,S H T . In 

Fig.1, the magnetic field strength 
o

H  is zero and 

1 o
H H  ( 0H ) .  Therefore, ,

ad
T H T  is 

positive.  Nevertheless, 0H , ,
ad

T H T  is 

negative.  Further explanation on the magnetocaloric 

effect is shown by [19]. 

As explained, the total entropy of magnetic material 

is required to find the adiabatic temperature change. The 

following shows the WDS model and other principles 

utilized to find the total entropy, consequently, the 

adiabatic temperature change is obtained. 

 

 
 

Figure 1 T-S diagram of magnetic material 

 

2.1  The Weiss mean field theory 

 A magnetic entropy, 
m

S , is a part of total entropy. 

Based on the Weiss mean field theory, Tishi [20] 

showed that the magnetic entropy is given as: 
 

2 1
sinh

2
( , ) ln ( )

sinh
2

m A B J

J
X

J
S B T N k XB X

X

J

    (1) 

 

where 
A

N  is the Avogadro’s number and 
B

k  represents 

the Boltzmann constant.  However, the term in front of 

square bracket can be /
A B

N k MW where MW  is molar 

mass [12, 8] .  This term depends on the unit of entropy 

required. de Oliveira et al. [21] suggested that this term 

can be replaced by N  which is the number of magnetic 

atoms per unit formula ( per kg or per mol) .  In Eq. 

(1), ( )
J

B X  denotes the Brillouin function, defined as: 

 

    
2 12 1 1

( ) coth coth
2 2 2 2

J

J XJ X
B X

J J J J
      (2) 

 

where J  represents the total angular momentum and X  

is given as following [21] 
 

3 ( )

( 1)

J B c J

B

g BJ T B X J
X

k T T J
                        (3) 

 

where 
J

g  denotes the spectroscopic splitting factor and 

B
 is the Bohr magneton.  B  and 

c
T  are the magnetic 

induction and the Curie temperature, respectively. Since 

the magnetic induction, B  relates to magnetic field 

strength, H .  Even the previous details were discussed 

in terms of magnetic field strength, the magnetic 

induction can be used instead of H  in here and after.  

To find the value of magnetic entropy, Eqs. (2)  and 

( 3)  are simultaneously solved by numerical method.  In 

this study, Eq. (3) was rearranged to present ( )
J

B X  as a 

function of other parameters and this new equation is set 

to be equal to Eq.  ( 2) .  The numerical technique called 

bisection method is applied to find the value of X  and 

then ( )
J

B X  is found by substituting X  into Eq.  ( 2) . 
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Finally, the magnetic entropy can be obtained from Eq. 

(1).  

Before other entropies are explained, it is worth to 

discuss more about solving Eqs.  ( 2)  and ( 3) .  Fig.  2 

illustrates the solution, ( )
J

B X , solved from both 

equations at different temperatures.  The solid lines in 

Fig.2 are ( )
J

B X  calculated from Eq.  ( 3)  for different 

cases of temperature and the dash line is ( )
J

B X  

computed from Eq.  ( 2) .  All lines in Fig.  2 are 

determined based on the parameters ( , ,... .
c

J T etc ) 

associated with Gd.  The lower value of magnetic 

induction ( B =  0.5Tesla)  is used for plotting Fig. (2) . 

However, if higher value of B  is applied to Eq.  ( 3) , 

( )
J

B X  at lower value of X  is negative.  The 

intersection of both lines ( solid and dash lines)  is the 

solution. From Fig.2, it is clearly seen that at 
c

T T  and 

c
T T  the solution is approaching to zero. For 

c
T T , 

the solution has higher value than the previous cases. It 

should be noted here that for 
c

T T  and 
c

T T , if 

higher value of B  is substituted into Eq.  ( 3) , the 

solution must have higher value than that expressed in 

Fig. 2 

 

 
 

Figure 2 Solutions of Eqs. (2) and (3) at different 

temperatures 

 

2.2  The Debye theory 

The lattice contribution to the specific heat implies 

the lattice contribution to the entropy, 
l

S , as [22]: 

 

,

D

v l

S
c T

T
              (4) 

 

Kittel [23] showed that: 

 
3

4
/

, 20
9

1

D

x
T

v l A B
x

D

T x e
c N k dx

e
      (5) 

 

where 
D

 is the Debye temperature. Substituting Eq. (5) 

to Eq. (4), the lattice entropy is determined as: 

 

/

3
3

/

20

3ln 1

( )
12

1

D

D

T

Tl A B

x
D

e

S T N k T x
dx

e

          (6) 

 

The integration term of Eq. (6) can be obtained by using 

trapezoidal rule. 

 

2.3  The Sommerfeld theory 

Ashcroft and Mermin, [24] have discussed about the 

Sommerfeld theory of conduction in metals. They 

summarized that the heat capacity per unit mole 

contributed by free electron is: 

 

e
c T                         (7) 

 

This relation is also found in Callen [22]. The 

coefficient, , for some metals obtained from 

calculation compared with measurement are shown in 

[24]. According Eq. (4), the entropy of electron can be 

obtained as: 

 

( )
e

S T T                        (8) 

 

2.4  Total entropy 

The total entropy, which is a function of temperature 

and magnetic induction, is the sum of the three entropies 

or: 

 

, , ( ) ( )
m l e

S B T S B T S T S T                (9) 

 

To find the adiabatic temperature change in 

magnetization process, a numerical method, called 

secant method, is employed.  The iterative equation, 

which is developed from this method, is [25]: 

 

1

1

1

i i i

i i

i i

f x x x
x x

f x f x
              (10) 

 

For this problem, x  is the temperature of magnetic 

material in adiabatic magnetization state and subscript i  

indicates the number of iterations. ( )
i

f x  represents 

1
( , ) ( , )

o o i
S B T S B T . The calculation program is 

terminated when 6( ) 10
i

f x  and the solution is 

referred as 
1

T . The adiabatic temperature change is 

1ad oT T T .  

The adiabatic temperature change was calculated 

following WDS method. Before the calculated adiabatic 

temperature changes are used to train the neural network, 

some calculated results are validated with the data from 

[26, 27]. In this study, the magnetic induction is varied 

from 0.5Tesla to 10Tesla with incremental of 0.25Tesla, 

while the magnetic material temperature is increased 

from 230K to 330K with incremental of 1K. The 

adiabatic temperature change is calculated and it is used 

to train a neural network. Therefore, the training data is, 

then, totally 3939. 
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3. DESIGN AND TRAINING OF AN ARTIFICIAL NEURAL 

NETWORK 

In this research, the multilayer perceptron network 

(MLPN) with backpropagation algorithm was used to 

predict the adiabatic temperature change of Gd. The 

number of hidden layers and the number of neurons or 

nodes in each hidden layer are flexibly chosen. However, 

to have optimum neural network structure, some 

criterions and recommendations from previous 

researches are adopted in this work.  

Christodoulou and Georgiopoulos [28] has 

mentioned that MLPN with one hidden layer and 

nonlinear activation functions for the hidden nodes can 

implement any function of practical interest. The 

agreement with the above discussion is also found in 

work of Azizi et al. [29]. The objective of this research 

is to develop a simple mathematical model to find the 

adiabatic temperature change of Gd, therefore, the 

MLPN, consisting of one input layer, one hidden layer, 

and one output layer, is selected, as shown in Fig 3. 

 

 
 

Figure 3 Chosen MLPN structure 

 

In Fig. 3, the symbols W  and b  represent weight 

and bias, respectively. f  shown in hidden and output 

layers is transfer function (also called activation 

function [30]). The number of neurons in hidden layer is 

not yet known and it is defined as n . In this work, there 

are two inputs, the magnetic induction, B  and magnetic 

material temperature, T . The inputs multiply with 

connection weights. The multiplication is summed with 

biases and the summation result goes into transfer 

function and produces neuron output. The neuron 

outputs from hidden layer are treaded as input to the 

output layer. The similar procedures are carried out in 

output layer, which has only one neuron, and the 

network output, adT  is obtained. The equation used to 

explain the above process is: 

 

, , , ,1( ( ) )
ad o o hn h n i i h n o

T f W f W X b b              (11) 

 

where 
i

X  is input vector and i  = 1, 2. 

As found in [16-18, 26, 29], the transfer function 

applied in the hidden layer is nonlinear and there are 

hyperbolic tangent and log sigmoid transfer functions. 

Liu et al. [31] mentioned that the hyperbolic tangent 

transfer function is the most commonly used in hidden 

layer. For output layer, the linear transfer function is 

often used. Thus, in this research, hyperbolic tangent 

transfer function is applied in the hidden layer and linear 

transfer function is used in the output layer. 

Backpropagation is well known to be the most 

widely applied to train the MLPN. It involves two stages, 

feed-forward stage and error backpropagation. In the 

error backpropagation, the weights and biases are 

improved to obtain some desired outputs. Levenberg-

Marquardt learning algorithm is employed in this study. 

The network errors taking place during training process 

can be expressed in terms of mean square error ( MSE ) 

and it is defined as: 

 

2

1

1 k

j j

j

MSE y o
k

                    (12) 

 

where y  and o  are target output and network out, 

respectively and k is the number of data.  In this work, 

accepted MSE is set to be 10-6. The maximum number 

of training cycles or epochs is 1000. At the certain 

number of neurons, MSE is observed. If MSE  is higher 

than the accepted MSE , the number of neurons in 

hidden layer is increased. Then, the training process is 

continued and MSE  is checked. This procedure is 

repeated until MSE  is lower than the accepted MSE . 

For the data used in the training process, these are 

generated from the WDS method previously explained. 

There are 3939 data for training and 966 untrained data 

are generated for testing. The outputs, adT , are 

normalized between 0 and 1 by diving all outputs data 

by maximum adT , which is 19.60118K. 

 

4. RESULTS AND DISCUSSION 

Table 1 presents the training results at different 

numbers of neurons in the hidden layer. In the table 

MSE  values and coefficients of determination are 

shown for each case of neural network structures. It is 

found that, in 1000 epochs, the network with 16 neurons 

in the hidden layer can provide MSE  value lower than 

10-6. The coefficient of determination ) 2R ( is about 1. 

Moreover, the number of neurons is increased and the 

training process continues. It is found that MSE  of 

training is still lower than 10-6. To have the simple 

model to find the adiabatic temperature change, neural 

network structure with 16 neurons in hidden layer is 

firstly focused. To make sure that this neural network 

structure can generally predict the adiabatic temperature 

change even there are not trained adiabatic temperature 

change data. Therefore, the testing process is conducted 

and the MSE  and 2R  are observed. 966 untrained data 

introduce to 2-16-1 neural network. The network output 

is compared to the actual output. The testing result is 

shown in Table 2. Besides the testing result of 2-16-1 

network, Table 2 also presents testing results of other 

structures.  
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Table 1 The performance results of the network trainings for 

different numbers of neurons in the hidden layer 

NO. of neuron in 

the hidden layer 
MSE  2R  

1 1.17 10-2 0.88753 

2 8.60 10-4 0.99218 

3 2.79 10-4 0.99747 

4 7.35 10-5 0.99933 

5 7.95 10-5 0.99928 

6 4.15 10-5 0.99962 

7 4.41 10-5 0.99960 

8 2.33 10-5 0.99979 

9 1.16 10-5 0.99989 

10 5.92 10-6 0.99995 

11 4.90 10-6 0.99996 

12 5.88 10-6 0.99995 

13 2.46 10-6 0.99998 

14 5.77 10-6 0.99995 

15 1.09 10-6 0.99999 

16 9.99 10
-7

 0.99999 

17 9.99 10-7 0.99999 

18 9.98 10-7 0.99999 

19 9.80 10-7 0.99999 

20 9.99 10-7 0.99999 

 
Table 2 The performance results of testing process 

Neural network 

structure 
MSE  2R  

2-16-1 4.46 10-5 0.99999 

2-17-1 4.86 10-5 0.99999 

2-18-1 4.68 10-5 0.99999 

2-19-1 4.83 10-5 0.99999 

2-20-1 4.78 10-5 0.99999 

 

From Table 2, it can be observed that 2-16-1 

network provides the lowest MSE  value with 2R  of 1. 

Comparing to other structures expressed in this table, 

the MSE  values are insignificantly different. Therefore, 

the network structure of 2-16-1 is selected as it is simple 

and gives lowest MSE . However, it should be 

mentioned here that the MSE values shown in Table 2 

are calculated based on the normalized value of the 

adiabatic temperature change. For the actual value of the 

adiabatic temperature change, the network output has to 

be multiplied with 19.60118K. Thus, the MSEs , which 

are calculated based on the actual adiabatic temperature 

change are, of course, higher than that presented in 

Table 2. In the case of 2-16-1 network, the MSE  value 

computed based on the actual adiabatic temperature 

change is 0.0171 with 2R  of 1. Fig. 4 presents the 

adiabatic temperature change calculated from WDS 

method discussed in section 2, called actual value, via 

the adiabatic temperature change calculated from 2-16-1 

network, called predicted value. From the figure, it 

confirms that the adiabatic temperature change predicted 

from the 2-16-1 network is acceptable with average 

absolute relative error of 0.47%. 

 

 

 

 

 

 

 

 
 

Figure 4 Comparison of adT between actual values and 

predicted values from 2-16-1 network 

 

To develop a mathematic model of the adiabatic 

temperature change at different magnetic inductions and 

temperatures, which is the objective of this research, the 

connected weights and biases, adjusted from training 

process, are required. The weights and biases are finally 

used to form the adiabatic temperature change model. 

For selected structure, the weights and biases are shown 

in Table 3.  The weight, 1W , is 2-dimensional array, 

while 1b  and 2W  are column matrix.  Although, there 

are totally 65 constants )weights and biases(, it is simple 

to develop a computer code to calculate the adiabatic 

temperature change, as following MATLAB code. 

 

function DTadNN=ApplCode(B,T) 

load WB % WB=[W1, b1, W2, b2] shown in Table 3 

NN=0; 

for i=1 to 16 

    n=tanh(WB(i,1)*B+WB(i,2)*T+WB(i,3))*WB(i,4)); 

    NN=n+NN; 

end 

DTad=(NN+WB(1,5))*19.60118 

 

For the weights and biases, the researchers can copy 

from soft copy of this paper and paste into their 

computer codes. These weights and biases must be 

rearranged following the syntax of a computer language 

that the researches use. Generally, using WDS model to 

find the adiabatic temperature change consumes 15,600 

s  while the developed model in this research (using 

the MATLAB code and constants in Table 3) spends 12 

s . 

Finally, the developed model with the weights and 

biases are implemented to find the adiabatic temperature 

changes at different magnetic inductions and 

temperatures. Figure 5 shows the comparison of the 

adiabatic temperature change obtained from the 

developed model and WDS model. It obviously presents 

that the adiabatic temperature change from the 

developed model (Fig. 5(a)) completely match with that 

from WDS model (Fig. 5(b)).  
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Table 3 The connected weights and biases of 2-16-1 network 

1( ,1)W i  1( , 2)W i  1( )b i  2( )W i  2b  

1.4376E-01 8.3950E-02 -3.7284E+01 3.1092E-01 0.400739 

-2.1090E+00 7.9854E-02 -2.2111E+01 -1.6217E-02 0 

-1.3800E-01 -2.1936E-02 7.9901E+00 -1.2137E-01 0 

1.2450E-01 -2.8263E-02 7.2124E+00 4.0868E+00 0 

-1.4354E-01 3.2014E-02 -8.0583E+00 5.6434E+00 0 

1.6328E-01 -3.5899E-02 8.9494E+00 2.0796E+00 0 

5.8103E-02 5.5223E-02 -1.6188E+01 2.4148E-01 0 

8.6532E-03 1.5991E-01 -4.7109E+01 3.5910E-01 0 

8.5968E-03 1.7742E-01 -5.2416E+01 -3.4464E-01 0 

-1.3861E-01 -4.2658E-02 1.2214E+01 -1.6077E-01 0 

-2.7788E-01 -6.5912E-02 1.6671E+01 9.9687E-02 0 

4.9556E-01 -6.9735E-02 1.9770E+01 4.5177E-02 0 

1.7144E-01 3.7235E-02 -9.2525E+00 3.7098E-01 0 

3.1908E-02 -9.1030E-02 2.7260E+01 9.0342E-02 0 

-9.8330E-01 8.3555E-02 -2.3846E+01 -3.6534E-02 0 

-3.5379E-01 -1.0835E-01 2.5832E+01 4.0205E-02 0 

 

 

 
 
Figure 5 The surface of adiabatic temperature change of Gd (a) 

from 2-16-1 neural network, (b) from WDS method 

 

5. CONCLUSION 

In the present work, a mathematical model for the 

adiabatic temperature change related to magnetic 

induction and magnetic material temperature was 

developed by using neural network. The adiabatic 

temperature change obtained from WDS method was 

employed to train the neural network. The result of 

training process showed that the optimum neural 

network structure was 2-16-1. Hyperbolic tangent and 

linear transfer functions were applied as transfer 

functions in the hidden layer and the output layer, 

respectively. From the testing process, it showed that the 

mean square error was 0.0171 with 2R  of 1. The model 

of the adiabatic temperature change, obtained from 

network weights and biases, can be easily developed by 

computer program. For further research, SMV or genetic 

algorithm is recommended to use and its performance 

should be compared with that of neural network method. 
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