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Abstract

An adiabatic temperature change of magnetocaloric material is an important parameter required in an active magnetic
regenerator modeling. In this study, the adiabatic temperature change of Gadolinium was modeled by using artificial neural network.
The adiabatic temperature changes were found at different magnetic inductions and magnetic material temperatures by means of
WDS ( Weiss-Debye-Sommerfeld) method. These data were applied to train a multilayer neural network with backpropagation
algorithm. Artificial neural network with one hidden layer was chosen and the number of neurons was varied in training process
until its mean square error (MSE) is lower than 10°°. From the training result, the optimum number of neurons in the hidden layer is
16. Untrained data were used to test the optimum structure. It is found that MSE of testing is 4.46 x 103, The weights and biases
obtained from the optimum structure were used to model the adiabatic temperature change. Finally, an example code for the
adiabatic temperature change calculation based on the weights and biases was presented as a guide for application.
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1. INTRODUCTION

Magnetic refrigeration (MR) is an emerging
technology without use of ozone depleting gases. The
working concept of MR is based on the magnetocaloric
effect (MCE) of magnetocaloric material, for example
Gadolinium (Gd). MCE was discovered by Warburg in
1881 [1]. In 1976, Brown built the first magnetic heat
pump operating at room temperature by applying
magnetic induction of 7 Tesla to Gd [2]. Magnetocaloric
effect can be simply explained as an adiabatic reversible
change of magnetic material temperature under the
variation of magnetic field. An increase of magnetic
field applied to magnetic material causes a temperature
increase in material. If the magnetic material is cooled
down to the surrounding temperature, removing
magnetic field can cause the temperature of magnetic
material dropped below the surrounding temperature.

Magnetic refrigeration at room temperature has been
interested by many researchers [ 1-4]. Active magnetic
regenerator (AMR) , one of the magnetic refrigerator
designs, consists of a magnetocaloric material traversed
by a fluid which flows from the cold end to the hot end
of the regenerator [5]. To develop an AMR prototype,
numerical modeling of the system is useful, because it
saves budget and time for optimizing design under
various operating conditions. Several AMR models have
been published in the literatures [ 6-13] . Since the
magnetocaloric properties of Gd are widely published,
Gd has become the reference magnetocaloric material in
the scientific community. Then, in both numerical and
experimental studies of AMR, Gd has been often used.

Presenting MCE of magnetocaloric material in the
model, this is an important step which is quite complex.
In literatures, the MCE can be considered in the model
by two approaches. The first one is using derivative of
thermodynamic property of the magnetocaloric material,
referred as built-in method [9]. Researches using built-in
method have been found in [5, 7, 10, 11]. The second

method is applying adiabatic temperature change (AT, )

directly into the model, called discrete method [12, 15].
Nielsen et al. [9] reported that the discrete method is the
simplest and most straightforward way, while the built-
in method requires details and numerically differentiable
data of magnetization and specific heat as function of
both temperature and magnetic field. Use of the
adiabatic temperature change in magnetic refrigerator
model can be found in [6, 8, 12, 15].

To find the adiabatic temperature change value,
WDS (Weiss-Debye-Sommerfeld) method, explained in
the next section, is usually performed. However, WDS
method significantly consumes time and computer
resources. Most of AMR models are often developed by
finite difference method. Calculation of adiabatic
temperature changes in all nodes can cause large
computational delay. The better way to find the
adiabatic temperature change is using the adiabatic
temperature change equation which is formed as a
function of magnetic induction, B, (or magnetic field
strength, H depending on the information that user
has) and magnetic material temperature.

Siddikov et al. [6] presented the adiabatic
temperature change equation of Gd by using the least-

squares  fitting  technique = and  experimental
measurements. In other words, the least square
technique they applied requires some constants,

obtained from numerical experiments. However, the
experimental data used to fit the equation are not shown
in their published paper. Furthermore, after further
investigated by the authors, it is found that, at some
magnetic inductions, their equation gives unreasonable
values of the adiabatic temperature change.

Artificial neural network or neural network is a
technique widely used to mimic properties of material,
[ 16- 18] . The aim of this work is to develop a
mathematical model of the adiabatic temperature change
related to magnetic induction and magnetic material
temperature for Gd by means of neural network. In this
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work, we are interested to use the WDS method to find
the adiabatic temperature changes of Gd. The data
obtained from WDS method are adopted to train the
neural network in order to generate a mathematical
model for the adiabatic temperature change of Gd,
relating to the magnetic induction and the magnetic
material temperature.

The developed adiabatic temperature change model
should be simple to construct a computer program,
because it is often used in AMR model. In this paper,
the MCE is discussed and the WDS method is shown in
section 2. Then, the calculated adiabatic temperature
changes at different magnetic inductions and material
temperatures are obtained. In section 3, the neural
network method, used to find the relationship between
magnetic induction, metrical temperature and the
adiabatic temperature change, is discussed. The results
of neural network training and testing are shown.
Finally, an example code for computing the adiabatic
temperature change is presented.

2. SIMULATION OF THE MAGNETOCALORIC EFFECT

In a numerical study of AMR, the adiabatic
temperature change is one of the most important
parameters needed to be known. Especially, in the AMR
model called the discrete method, the magnetocaloric
effect in the model is to apply the adiabatic temperature
to the solid during the magnetization and
demagnetization periods directly [ 9] . To find the
adiabatic temperature change, WDS model is often used.
However, before WDS model is described, the
magnetocaloric effect should be further explained.

The temperature-total entropy diagram of magnetic
material is shown in Fig.1. At constant pressure, the
entropy of magnetic material is a function of magnetic
field strength, H ( or magnetic induction, B,

depending on the parameter wanted to present) , and
temperature, 7 or S(H,T). For initial temperature of

T, and magnetic field strength of H

4 0

the total entropy
of magnetic material is SO(HU,TO). If the applied
with
adiabatically reversible process, the total entropy of
magnetic material remains constant or S, =S, .

Therefore, the new equilibrium state is at S, (H . ,Tl) .In

magnetic field strength is changed to H,

Fig.1, the magnetic field strength H_  is zero and
H >H, ( AH>0) . Therefore, AT, (AH,T) is
Nevertheless, AH <0, AT, (AH,T) is

negative. Further explanation on the magnetocaloric
effect is shown by [19].

As explained, the total entropy of magnetic material
is required to find the adiabatic temperature change. The
following shows the WDS model and other principles
utilized to find the total entropy, consequently, the
adiabatic temperature change is obtained.

positive.

H,>H,

Total Entropy

AT,

=

Temperature
Figure 1 T-S diagram of magnetic material

2.1 The Weiss mean field theory
A magnetic entropy, S, , is a part of total entropy.

Based on the Weiss mean field theory, Tishi [20]
showed that the magnetic entropy is given as:

i h(z;;lxj
S, (B.T)=N k,| In

sinh (Xj
2J

where N, is the Avogadro’s number and k, represents

_XB/ (X) (@]

the Boltzmann constant. However, the term in front of
square bracket can be N, k, / MW where MW is molar
mass [ 12, 8]. This term depends on the unit of entropy
required. de Oliveira et al. [21] suggested that this term
can be replaced by N which is the number of magnetic
atoms per unit formula ( per kg or per mol) . In Eq.
(1), B, (X) denotes the Brillouin function, defined as:

2J +1 2J+1)X 1 X
B, (X)= J coth ( ) ———coth— (2
2J 2J

where J represents the total angular momentum and X
is given as following [21]

¥ _ 8utBI 3T, (X)]
k,T T(J +1)

3

where g, denotes the spectroscopic splitting factor and
M, 1s the Bohr magneton. B and 7, are the magnetic

induction and the Curie temperature, respectively. Since
the magnetic induction, B relates to magnetic field
strength, H . Even the previous details were discussed
in terms of magnetic field strength, the magnetic
induction can be used instead of H in here and after.

To find the value of magnetic entropy, Eqs. (2) and
(3) are simultaneously solved by numerical method. In
this study, Eq. (3) was rearranged to present B, (X) as a

function of other parameters and this new equation is set
to be equal to Eq. (2). The numerical technique called
bisection method is applied to find the value of X and
then B, (X) is found by substituting X into Eq. (2).
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Finally, the magnetic entropy can be obtained from Eq.
D).

( )Before other entropies are explained, it is worth to
discuss more about solving Eqs. (2) and (3). Fig. 2
illustrates the solution, B,(X), solved from both
equations at different temperatures. The solid lines in
Fig.2 are B,(X) calculated from Eq. (3) for different
cases of temperature and the dash line is B,(X)
computed from Eq. ( 2) . All lines in Fig. 2 are
determined based on the parameters ( J,T,...efc.)
associated with Gd. The lower value of magnetic
induction ( B = 0.5Tesla) is used for plotting Fig. (2).
However, if higher value of B is applied to Eq. (3),
B,(X) at lower value of X is negative. The
intersection of both lines (solid and dash lines) is the
solution. From Fig.2, it is clearly seen that at 7 =7 and
T >T. the solution is approaching to zero. For T <T_,
the solution has higher value than the previous cases. It
should be noted here that for T>7 and T =T, if
higher value of B is substituted into Eq. ( 3), the

solution must have higher value than that expressed in
Fig. 2

0.8 T
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Figure 2 Solutions of Egs. (2) and (3) at different
temperatures

2.2 The Debye theory
The lattice contribution to the specific heat implies
the lattice contribution to the entropy, S,, as [22]:

oS
7| & 4
c,, ( aTlD )

Kittel [23] showed that:

3
T o xte
CV’] = 9NAkB [e—j j ——dx (5)
D

* ey

where 6, is the Debye temperature. Substituting Eq. (5)
to Eq. (4), the lattice entropy is determined as:

“3In(1-e ™" )+

$,(T) =Nk, 12(%" [ 2l ©
O) 70 (e -1)

The integration term of Eq. (6) can be obtained by using
trapezoidal rule.

2.3 The Sommerfeld theory
Ashcroft and Mermin, [24] have discussed about the
Sommerfeld theory of conduction in metals. They
summarized that the heat capacity per unit mole
contributed by free electron is:
¢, =T )
This relation is also found in Callen [22]. The
coefficient, » , for some metals obtained from
calculation compared with measurement are shown in

[24]. According Eq. (4), the entropy of electron can be
obtained as:

S.(T)=yT ®)

2.4 Total entropy

The total entropy, which is a function of temperature
and magnetic induction, is the sum of the three entropies
or:

S(B.T)=S, (B.T)+S,(1)+5,(T) ©)

To find the adiabatic temperature change in
magnetization process, a numerical method, called
secant method, is employed. The iterative equation,
which is developed from this method, is [25]:

(10)

For this problem, x is the temperature of magnetic
material in adiabatic magnetization state and subscript i
indicates the number of iterations. f(x;) represents
S(B,.T,)~S(B,.T)

terminated when f(x,)<10° and the solution is

The calculation program is

referred as 7, . The adiabatic temperature change is
AT, =T-T,.

The adiabatic temperature change was calculated
following WDS method. Before the calculated adiabatic
temperature changes are used to train the neural network,
some calculated results are validated with the data from
[26, 27]. In this study, the magnetic induction is varied
from 0.5Tesla to 10Tesla with incremental of 0.25Tesla,
while the magnetic material temperature is increased
from 230K to 330K with incremental of 1K. The
adiabatic temperature change is calculated and it is used
to train a neural network. Therefore, the training data is,
then, totally 3939.
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3. DESIGN AND TRAINING OF AN ARTIFICIAL NEURAL
NETWORK

In this research, the multilayer perceptron network
(MLPN) with backpropagation algorithm was used to
predict the adiabatic temperature change of Gd. The
number of hidden layers and the number of neurons or
nodes in each hidden layer are flexibly chosen. However,
to have optimum neural network structure, some

criterions and recommendations from previous
researches are adopted in this work.
Christodoulou and  Georgiopoulos [28] has

mentioned that MLPN with one hidden layer and
nonlinear activation functions for the hidden nodes can
implement any function of practical interest. The
agreement with the above discussion is also found in
work of Azizi et al. [29]. The objective of this research
is to develop a simple mathematical model to find the
adiabatic temperature change of Gd, therefore, the
MLPN, consisting of one input layer, one hidden layer,
and one output layer, is selected, as shown in Fig 3.

Input Layer Hidden Layer Qutput Layer

Figure 3 Chosen MLPN structure

In Fig. 3, the symbols W and b represent weight
and bias, respectively. f shown in hidden and output

layers is transfer function (also called activation
function [30]). The number of neurons in hidden layer is
not yet known and it is defined as n . In this work, there
are two inputs, the magnetic induction, B and magnetic
material temperature, 7 . The inputs multiply with
connection weights. The multiplication is summed with
biases and the summation result goes into transfer
function and produces neuron output. The neuron
outputs from hidden layer are treaded as input to the
output layer. The similar procedures are carried out in
output layer, which has only one neuron, and the
network output, AT, is obtained. The equation used to

explain the above process is:

AT

ad

= fn(Wn.hnfh(Wn,iXi +bh.n)+bo.1) (ll)

where X, is input vector and i =1, 2.

As found in [16-18, 26, 29], the transfer function
applied in the hidden layer is nonlinear and there are
hyperbolic tangent and log sigmoid transfer functions.
Liu et al. [31] mentioned that the hyperbolic tangent
transfer function is the most commonly used in hidden
layer. For output layer, the linear transfer function is
often used. Thus, in this research, hyperbolic tangent

transfer function is applied in the hidden layer and linear
transfer function is used in the output layer.

Backpropagation is well known to be the most
widely applied to train the MLPN. It involves two stages,
feed-forward stage and error backpropagation. In the
error backpropagation, the weights and biases are
improved to obtain some desired outputs. Levenberg-
Marquardt learning algorithm is employed in this study.
The network errors taking place during training process
can be expressed in terms of mean square error ( MSE)
and it is defined as:

1 2
MSE:ZZ(Y:'_O./) (12)

Jj=1

where y and o are target output and network out,

respectively and k is the number of data. In this work,
accepted MSE is set to be 10, The maximum number
of training cycles or epochs is 1000. At the certain
number of neurons, MSE is observed. If MSE is higher
than the accepted MSE , the number of neurons in
hidden layer is increased. Then, the training process is
continued and MSE is checked. This procedure is
repeated until MSE is lower than the accepted MSE .
For the data used in the training process, these are
generated from the WDS method previously explained.
There are 3939 data for training and 966 untrained data
are generated for testing. The outputs, AT, , are

normalized between 0 and 1 by diving all outputs data
by maximum AT, , which is 19.60118K.

4. RESULTS AND DISCUSSION

Table 1 presents the training results at different
numbers of neurons in the hidden layer. In the table
MSE values and coefficients of determination are
shown for each case of neural network structures. It is
found that, in 1000 epochs, the network with 16 neurons
in the hidden layer can provide MSE value lower than

10°%. The coefficient of determination ) R*( is about 1.
Moreover, the number of neurons is increased and the
training process continues. It is found that MSE of
training is still lower than 10 To have the simple
model to find the adiabatic temperature change, neural
network structure with 16 neurons in hidden layer is
firstly focused. To make sure that this neural network
structure can generally predict the adiabatic temperature
change even there are not trained adiabatic temperature
change data. Therefore, the testing process is conducted

and the MSE and R® are observed. 966 untrained data
introduce to 2-16-1 neural network. The network output
is compared to the actual output. The testing result is
shown in Table 2. Besides the testing result of 2-16-1
network, Table 2 also presents testing results of other
structures.
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Table 1 The performance results of the network trainings for
different numbers of neurons in the hidden layer

NO. of neuron in MSE R?
the hidden layer
1 1.17x 102 0.88753
2 8.60x 10 0.99218
3 2.79x 10 0.99747
4 7.35x% 107 0.99933
5 7.95% 107 0.99928
6 4.15%x 107 0.99962
7 4.41x 107 0.99960
8 2.33x 1073 0.99979
9 1.16x 1073 0.99989
10 5.92x10° 0.99995
11 4.90x% 10° 0.99996
12 5.88x 10 0.99995
13 2.46x 10 0.99998
14 5.77x 10 0.99995
15 1.09x 106 0.99999
16 9.99x 107 0.99999
17 9.99x 107 0.99999
18 9.98x 107 0.99999
19 9.80x 107 0.99999
20 9.99x 107 0.99999

Table 2 The performance results of testing process

Neural network MSE R?
structure
2-16-1 4.46x 107 0.99999
2-17-1 4.86x 107 0.99999
2-18-1 4.68x 107 0.99999
2-19-1 4.83% 107 0.99999
2-20-1 4.78x 107 0.99999

From Table 2, it can be observed that 2-16-1

network provides the lowest MSE value with R* of 1.
Comparing to other structures expressed in this table,
the MSE values are insignificantly different. Therefore,
the network structure of 2-16-1 is selected as it is simple
and gives lowest MSE . However, it should be
mentioned here that the MSE values shown in Table 2
are calculated based on the normalized value of the
adiabatic temperature change. For the actual value of the
adiabatic temperature change, the network output has to
be multiplied with 19.60118K. Thus, the MSEs , which
are calculated based on the actual adiabatic temperature
change are, of course, higher than that presented in
Table 2. In the case of 2-16-1 network, the MSE value
computed based on the actual adiabatic temperature
change is 0.0171 with R*> of 1. Fig. 4 presents the
adiabatic temperature change calculated from WDS
method discussed in section 2, called actual value, via
the adiabatic temperature change calculated from 2-16-1
network, called predicted value. From the figure, it
confirms that the adiabatic temperature change predicted
from the 2-16-1 network is acceptable with average
absolute relative error of 0.47%.

20

AT, predicted value (K)

T T T T
0 5 10 15 20

AT, actual value (K)

Figure 4 Comparison of AT, between actual values and
predicted values from 2-16-1 network

To develop a mathematic model of the adiabatic
temperature change at different magnetic inductions and
temperatures, which is the objective of this research, the
connected weights and biases, adjusted from training
process, are required. The weights and biases are finally
used to form the adiabatic temperature change model.
For selected structure, the weights and biases are shown
in Table 3. The weight, W1, is 2-dimensional array,
while b1 and W2 are column matrix. Although, there
are totally 65 constants )weights and biases(, it is simple
to develop a computer code to calculate the adiabatic
temperature change, as following MATLAB code.

function DTadNN=ApplCode(B,T)

load WB % WB=[WI, bl, W2, b2] shown in Table 3

NN=0;

fori=1to 16
n=tanh(WB(i,1)*B+WB(i,2)*T+WB(i,3))*WB(i,4));
NN=n+NN;

end

DTad=(NN+WB(1,5))*19.60118

For the weights and biases, the researchers can copy
from soft copy of this paper and paste into their
computer codes. These weights and biases must be
rearranged following the syntax of a computer language
that the researches use. Generally, using WDS model to
find the adiabatic temperature change consumes 15,600
pus while the developed model in this research (using
the MATLAB code and constants in Table 3) spends 12
us .

Finally, the developed model with the weights and
biases are implemented to find the adiabatic temperature
changes at different magnetic inductions and
temperatures. Figure 5 shows the comparison of the
adiabatic temperature change obtained from the
developed model and WDS model. It obviously presents
that the adiabatic temperature change from the
developed model (Fig. 5(a)) completely match with that
from WDS model (Fig. 5(b)).
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Table 3 The connected weights and biases of 2-16-1 network

W1G,1) W13i,2) bI(i) W2(i) b2
1.4376E-01 8.3950E-02 73.7284E+01 3.1092E-01 0.400739
-2.1090E+00 7.9854E-02 2.2111E+01 -1.6217E-02 0
~1.3800E-01 -2.1936E-02 7.9901E+00 -1.2137E-01 0
1.2450E-01 -2.8263E-02 7.2124E+00 4.0868E+00 0
-1.4354E-01 3.2014E-02 -8.0583E+00 5.6434E+00 0
1.6328E-01 -3.5899E-02 8.9494E+00 2.0796E+00 0
5.8103E-02 5.5223E-02 -1.6188E+01 2.4148E-01 0
8.6532E-03 1.5991E-01 -4.7109E+01 3.5910E-01 0
8.5968E-03 1.7742E-01 -5.2416E+01 -3.4464E-01 0
~1.3861E-01 -4.2658E-02 1.2214E+01 -1.6077E-01 0
-2.7788E-01 -6.5912E-02 1.6671E+01 9.9687E-02 0
4.9556E-01 -6.9735E-02 1.9770E+01 4.5177E-02 0
1.7144E-01 3.7235E-02 -9.2525E+00 3.7098E-01 0
3.1908E-02 -9.1030E-02 2.7260E+01 9.0342E-02 0
-9.8330E-01 8.3555E-02 -2.3846E+01 -3.6534E-02 0
-3.5379E-01 -1.0835E-01 2.5832E+01 4.0205E-02 0
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Figure 5 The surface of adiabatic temperature change of Gd (a)
from 2-16-1 neural network, (b) from WDS method

5. CONCLUSION

In the present work, a mathematical model for the
adiabatic temperature change related to magnetic
induction and magnetic material temperature was
developed by using neural network. The adiabatic
temperature change obtained from WDS method was
employed to train the neural network. The result of
training process showed that the optimum neural
network structure was 2-16-1. Hyperbolic tangent and

linear transfer functions were applied as transfer
functions in the hidden layer and the output layer,
respectively. From the testing process, it showed that the

mean square error was 0.0171 with R* of 1. The model
of the adiabatic temperature change, obtained from
network weights and biases, can be easily developed by
computer program. For further research, SMV or genetic
algorithm is recommended to use and its performance
should be compared with that of neural network method.
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