

การประยุกต์ใช้เซรามิกส์พรุนที่ประกอบด้วยซีโอໄලเต็ 丫และสารประกอบคล้ายไฮโดรทัลไชต์
เพื่อบำบัดมลสารในน้ำเสียชุมชน

Application of Porous Zeolite Y and Hydrotalcite - Like Compound Ceramic
for Pollutants Treatment in Municipal Wastewater

ชานนท์ แดงสีพล*, นิพนธ์ ตั้งคณานุรักษ์, คณิตา ตั้งคณานุรักษ์

Chanon Dangsepon*, Nipon Tungkananurak, Kanita Tungkananurak

¹ภาควิชาวิทยาศาสตร์สิ่งแวดล้อม คณะสิ่งแวดล้อม มหาวิทยาลัยเกษตรศาสตร์

*Corresponding author: ball_loon_3-2@hotmail.com

บทคัดย่อ

งานวิจัยนี้เป็นการใช้ประโยชน์ถ่านแกลบซึ่งเป็นของเสียจากภาคเกษตรกรรมมาเป็นวัตถุดิบในการสังเคราะห์ซีโอໄලเต็ 丫 และขี้นรูปเป็นเซรามิกส์พรุนร่วมกับสารประกอบคล้ายไฮโดรทัลไชต์ เพื่อใช้บำบัดมลสารในน้ำเสียชุมชน ผลการศึกษาพบว่าองค์ประกอบในการขี้นรูปเซรามิกส์พรุนที่เหมาะสมและมีประสิทธิภาพในการบำบัดน้ำเสียชุมชน คือ ซีโอໄලเต็ 丫 48 %v/v สารประกอบคล้ายไฮโดรทัลไชต์ 12 %v/v คาร์บอคซีเมทิลเซลลูโลส 24 %v/v ถ่านไม้ 16 %v/v และน้ำ 200 %v/v ของวัตถุดิบทั้งหมดและทำการซินเตอเริงค์ที่อุณหภูมิ 750 °C เป็นเวลา 3 ชม. สมบัติทางกายภาพของเซรามิกส์พรุนได้แก่ ความพรุนปิดภู 67.57% ปริมาตรรูพรุนช่อง เปิด 0.68 cm³/g ค่าการดูดซับน้ำ 67.73 % และความหนาแน่นมวลรวม 0.93 g/cm³ เมื่อทำการศึกษาด้วยวิธีแพคคอลัมน์ ประสิทธิภาพในการบำบัด PO₄³⁻-P, NO₃⁻-N, NH₃-N, COD, Mn และ Fe ได้สูงสุดเท่ากับ 91.12%, 100.00%, 38.94%, 70.00%, 100.00% และ 100.00% ตามลำดับ นอกจากนี้พบว่าในระหว่างวันประสิทธิภาพการบำบัดลดลงจากครั้งที่ 1 – ครั้งที่ 5 ของ การบำบัด แต่ข้อดีของวัสดุนี้คือสามารถรีเจนเอร์ทางชีวภาพได้ เมื่อหยุดการบำบัดในตอนกลางคืน และสามารถนำมาใช้ได้ในวันต่อไป

คำสำคัญ: เซรามิกส์พรุน, ซีโอໄලเต็ 丫, ไฮโดรทัลไชต์, น้ำเสียชุมชน

Abstract

This research, utilization of the rice husk ash which is agricultural waste as raw material for zeolite Y synthesis and sintering as porous ceramic with hydrotalcite-like compound, for pollutants treatment in municipal wastewater. It showed that the optimum ingredients of porous ceramic were zeolite Y 48%v/v, hydrotalcite-like compound 12%v/v, carboxymethyl cellulose 24 %v/v, charcoal 16 %v/v, and water 200%v/v of green body and sintering with temperature 750 °C for 3 hours. The physical properties of this porous ceramic were apparent porosity 67.73%, open pore volume 0.68 cm³/g, water absorption 67.73 % and bulk density 0.93 g/cm³. The highest removal efficiency of PO₄³⁻-P, NO₃⁻-N, NH₃-N, COD, Mn and Fe with the packed column method were 91.12%, 100.00%, 38.94%, 70.00%, 100.00%, and 100.00% respectively. In addition, during the day the efficiency of pollutants treatment was decrease from the 1st to the 5th time of treatment. However, the advantage of this material, they could be bio-regenerated when stop operating during the night and could be used for the next day.

Keywords: Porous ceramic, Zeolite, Hydrotalcite, Municipal wastewater

1. บทนำ

ในปัจจุบันซีโอไลต์ (Zeolite) ได้เข้ามามีบทบาทในงานทางด้านสิ่งแวดล้อมมากยิ่งขึ้นด้วยคุณสมบัติพิเศษของวัสดุที่มีความแตกต่างจากวัสดุทั่วไปคือ มีรูพรุนขนาดเล็ก และมีประจุไฟฟ้าบวกโครงสร้างของวัสดุ ทำให้วัสดุดักกล่าวมีความสามารถในการดูดซับสารมลพิษต่างๆ เช่น พีโนล (Phenol) [1] ยาปราบศัตรูพืชและสัตว์ (Pesticide) [2] สี้อม [3] และโลหะหนักชนิดต่างๆ [4] ที่ปนเปื้อนอยู่ในน้ำเสีย นอกจากนี้ซีโอไลต์ยังมีความสามารถในการกำจัด/บำบัดสารที่อยู่ในอากาศ เช่น NOx [5] เป็นต้น อย่างไรก็ดีซีโอไลต์ในธรรมชาติ (Natural zeolite) โดยทั่วไปมักมีคุณสมบัติที่ไม่เหมาะสมในการนำมาใช้เป็นวัสดุดูดซับเนื่องจากมีมีมลพิษต่างๆอยู่มากซึ่งขัดขวางกลไกในการดูดซับมลสาร นอกจากนี้ซีโอไลต์สังเคราะห์ (Synthetic zeolite) มักมีราคาที่ค่อนข้างสูงจึงทำให้การนำไปใช้ในทางสิ่งแวดล้อมถูกจำกัดลง ดังนั้นในงานวิจัยนี้ได้เลือกใช้ศักยภาพของถ่านแกลบ ซึ่งเป็นของเสียทางเกษตรกรรมที่มีจำนวนมากในประเทศไทย และมีองค์ประกอบทางเคมีที่เหมาะสมในการนำมาใช้เป็นวัตถุดีบตั้งต้นในการสังเคราะห์ซีโอไลต์ ทำให้วัสดุสังเคราะห์ที่ได้มีราคาต่ำลงอีกทั้งเป็นการใช้ประโยชน์จากของเสียทางการเกษตร ซึ่งสอดคล้องกับนิยามของวัสดุดูดซับสีเขียว (Green adsorbent) ที่หมายความถึงการผลิตวัสดุดูดซับที่มีต้นทุนต่ำซึ่งใช้วัตถุดีบจากผลผลิตได้ทางเกษตรกรรม ลิงตอกค้างทางเกษตรกรรมและของเสีย และสารตั้งต้นที่มีต้นทุนต่ำ [6] อย่างไรก็ตามเมื่อพิจารณาจากโครงสร้างของซีโอไลต์ ชนิดต่างๆ พบร้าซีโอไลต์ชนิด Y (Zeolite Y) หรือซีโอไลต์ชนิดโซเดียม Y (NaY zeolite) มีโครงสร้างรูพรุนที่เหมาะสมในการนำมาใช้เป็นวัสดุดูดซับมลสาร และมีเศษยาราฟของโครงสร้างที่มีความทนทานต่อกรดและด่าง แต่ด้วยอนุภาคของวัสดุที่มีขนาดเล็กมากจึงทำให้ยากต่อการใช้งานจริงในทางปฏิบัติ อีกทั้งด้วยความหลากหลายของมลสารที่อยู่ในน้ำเสียซึ่งมีทั้งประเภทที่มีประจุบวก ประจุลบ และไม่มีประจุ จึงสมควรให้น้ำสารประกอบคล้ายไฮดรอลไซต์ (Hydrotalcite-like compound) ซึ่งมีคุณสมบัติในการแลกเปลี่ยนประจุลบซึ่งมีคุณสมบัติตรงกันข้ามกับซีโอไลต์มาใช้เป็นสารตัวเติมในการปรับปรุงคุณสมบัติการแลกเปลี่ยนไฮอนของวัสดุ เพื่อความเหมาะสมต่อการใช้งานในการบำบัดมลสารในน้ำเสีย ดังนั้นวัตถุประสังค์ของโครงสร้างนี้ คือ การใช้เซรามิกส์พรุนที่ประกอบด้วยซีโอไลต์ Y/สารประกอบคล้ายไฮดรอลไซต์ที่เตรียมขึ้น เพื่อบำบัดสารในน้ำเสียชุมชน

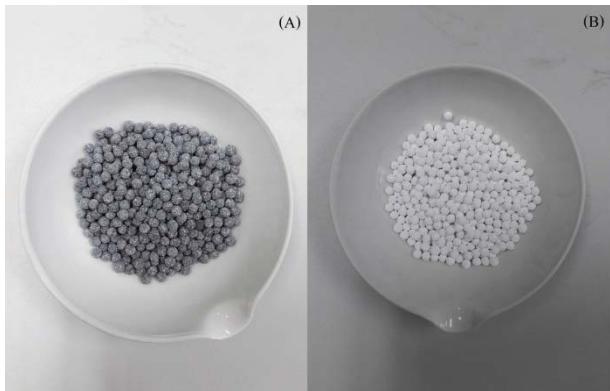
2. อุปกรณ์และวิธีการ

2.1 การสังเคราะห์ซีโอไลต์ Y

ชั่งโซเดียมไฮดรอกไซด์ (NaOH pellet) 24.48 กรัม ละลายในน้ำกลั่น 810.60 มิลลิลิตร จากนั้นแบ่งสารละลายออกเป็น 2 ส่วน เพื่อเตรียมสารละลายโซเดียมอัลูมิเนียม (9.76 กรัม) และโซเดียมซิลิกา (54.28 กรัม) บนเครื่องให้ความร้อนตามลำดับ ตั้งทึบไว้ให้เย็นที่อุณหภูมิห้องและนำสารละลายทั้ง 2 ผสมกัน ใส่ในขวด PP ปิดฝาและตั้งทึบไว้ เป็นเวลา 24 ชม. เพื่อให้เกิดการนิวเคลียชัน (Nucleation) จากนั้นทำการอบที่อุณหภูมิ 90 °C เป็นเวลา 24 ชม. เพื่อให้เจลเกิดผลึก (Crystallization) ล้างด้วยน้ำกลั่นและอบให้แห้ง วิเคราะห์ลักษณะเฉพาะด้วยเครื่อง XRD (X-ray diffractometer, Model D8 Advance: Bruker AXS, Source CuK alpha)

2.2 การสังเคราะห์สารประกอบคล้ายไฮดรอลไซต์

ผสมสารละลาย 0.5 M Al₂(SO₄)₃ และ 2 M MgCl₂ เข้าด้วยกันและปรับ pH ของสารละลายด้วย 10 N NaOH จนกระทั่ง pH = 10 ใส่ในขวด PP ปิดฝาและอบที่อุณหภูมิ 90 °C เป็นเวลา 24 ชม. จากนั้nl ล้างและอบตะกอนให้แห้ง วิเคราะห์ลักษณะเฉพาะด้วยเครื่อง XRD


2.3 การศึกษาหาสัดส่วนขององค์ประกอบที่เหมาะสมในการขึ้นรูปซีโอไลต์เป็นเซรามิกส์พรุน

โดยใช้ผงถ่านไม้ขนาดน้อยกว่า 500 μm เป็นสารก่อให้เกิดรูพรุน และใช้คาร์บอฟลูมิลเซลโลสเป็นสารคงรูปอินทรีย์ (Organic binder) โดยขึ้นรูปเป็นทรงกลมเส้นผ่านศูนย์กลางเฉลี่ย 3.79 มิลลิเมตร (รูปที่ 1) และทำการศึกษาโดยปรับอัตราส่วนของแต่ละองค์ประกอบดังตารางที่ 1 และทดสอบวัสดุด้วยวิธีอิมตัวด้วยน้ำ (Water impregnation method)

ตารางที่ 1 สัดส่วนองค์ประกอบที่ใช้ในการขึ้นรูปเซรามิกส์พรุน

Total solid phase (%v/v)	Total combustible phase (%v/v)		Optimum water content (%v/v of green body)
Zeolite* (%v/v)	Carboxymethyl cellulose (CMC)* (%v/v)	Charcoal* (%v/v)	
76	24	-	250
70	24	6	225
60	24	16	200
50	24	26	200

* โดยกำหนดให้ความหนาแน่นของเซอร์โคไลต์ Y, สารประกอบคล้ายไฮโดรทัลไชต์, คาร์บอฟิเมทิลเซลลูโลส และถ่านไม้ เท่ากับ 2.03, 1.89, 1.59 และ 0.4 g/cm^3

รูปที่ 1 เซรามิกส์พรุนก่อนเผา (A) และหลังเผา (B) ที่อุณหภูมิ 750°C

2.4 การศึกษาสัดส่วนเซอร์โคไลต์ Y และสารประกอบคล้ายไฮโดรทัลไชต์ที่เหมาะสมในการบำบัดสารในน้ำเสียด้วยวิธีแบบแบตช์ (Batch method)

โดยใช้สัดส่วนการขึ้นรูปที่เหมาะสมจาก การศึกษาที่ 2.3 มาทำการศึกษาดังตารางที่ 2 และแขวนสูตรที่ผ่านการขึ้นรูปด้วยความร้อนในน้ำกลันก่อนการทดสอบกับน้ำเสียชุมชน เป็นเวลา 5 วัน เพื่อให้โครงสร้างของสารประกอบคล้ายไฮโดรทัลไชต์เกิดการพัฒนาโครงสร้างใหม่และอบแห้ง จนน้ำหนักซึ่งมาก 11 กรัม แข็งในน้ำเสียชุมชน จากนั้น รอบรวมน้ำเสีย มหาวิทยาลัยเกษตรศาสตร์ บางเขน ปริมาณ 100 มิลลิลิตร เป็นเวลา 90 นาที และทำการตรวจวัดพารามิเตอร์น้ำเสียได้แก่ $\text{PO}_4^{3-}\text{-P}$, $\text{NO}_3^-\text{-N}$, $\text{NH}_3\text{-N}$ และ COD ตามวิธีมาตรฐานการตรวจวิเคราะห์คุณภาพน้ำและน้ำเสีย (Standard method for examination of water and wastewater) [7]

ตารางที่ 2 สัดส่วนระหว่างเซอร์โคไลต์ Y และสารประกอบคล้ายไฮโดรทัลไชต์

Total solid phase (%v/v)		Total combustible phase (%v/v)		Optimum water content (%v/v of green body)
Zeolite (%v/v)	Hydrotalcite-like compound (%v/v)	Carboxymethyl cellulose (CMC) (%v/v)	Charcoal (%v/v)	
A	-	24	B	C
A x 0.95	A x 0.05	24	B	C
A x 0.90	A x 0.10	24	B	C
A x 0.80	A x 0.20	24	B	C

* โดยกำหนดให้ A, B และ C คือ สัดส่วนองค์ประกอบของแข็งทั้งหมด, สัดส่วนองค์ประกอบถ่านไม้ และสัดส่วนองค์ประกอบของน้ำ

2.5 การศึกษาความสามารถในการบำบัดสารในน้ำเสียชุมชนด้วยเซรามิกส์พรุนที่เตรียมขึ้น ด้วยวิธีแพคคอลัมน์ (Column method)

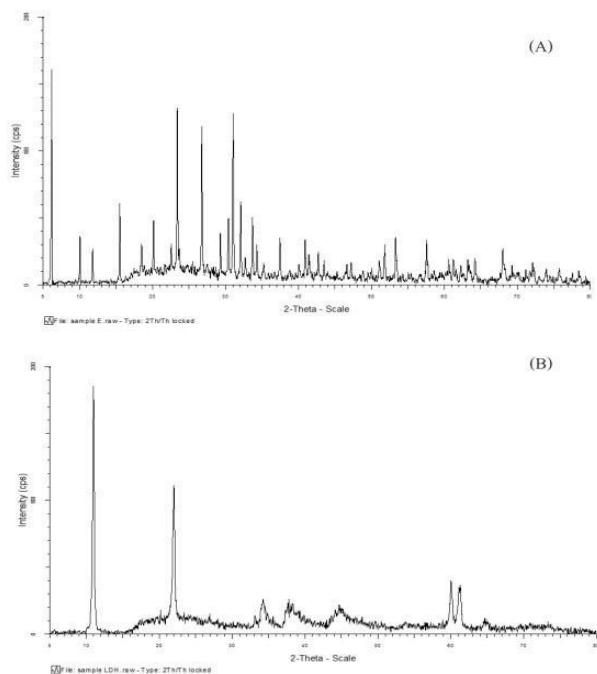
นำเซรามิกส์พรุนที่เตรียมได้จากการศึกษาที่ 2.4 แพคลงในคอลัมน์แก้วสูง 19.5 เซนติเมตร เส้นผ่าศูนย์กลาง 4.5 เซนติเมตร โดยฐานล่างสุดของคอลัมน์แก้วบรรจุด้วยเส้นใยกรองหนา 1 เซนติเมตร เพื่อป้องกันการอุดตันของวัสดุบริเวณคอกดของคอลัมน์แก้ว วัดอัตราการไหลได้เท่ากับ 4 มิลลิลิตรต่อวินาที

2.5.1 การศึกษาระยะเวลาการกักขึ้นที่เหมาะสม

เติมน้ำเสียลงในคอลัมน์แก้วรอบละ 160 มิลลิลิตรและทำการกักขึ้นเป็นเวลาต่างๆ ดังนี้ 30 60 90 และ 120 นาที ตามลำดับ และทำการวิเคราะห์พารามิเตอร์น้ำเสียเข่นเดียวกับข้อ 2.4

2.5.2 ประสิทธิภาพการบำบัดน้ำเสียชุมชนด้วยเซรามิกส์พรุน

ทำการเติมน้ำเสียลงในคอลัมน์แก้วรอบละ 160 มิลลิลิตร และทำการแข็งโดยใช้ระยะเวลาการกักขึ้นที่เหมาะสมจาก การศึกษาที่ 2.5.1 ทำการศึกษาเข่นน้ำในรอบ 50 รอบ (ศึกษาวันละ 5 รอบ เป็นเวลา 10 วัน) และทำการวิเคราะห์พารามิเตอร์น้ำเสียได้แก่ $\text{PO}_4^{3-}\text{-P}$, $\text{NO}_3^-\text{-N}$, $\text{NH}_3\text{-N}$, COD, Mn และ Fe ตามวิธีมาตรฐานเข่นเดียวกับข้อ 2.4


3. ผลการศึกษา

3.1 ลักษณะเฉพาะของเซอร์โคไลต์ Y และสารประกอบคล้ายไฮโดรทัลไชต์ที่ลังเคราะห์ได้

จากการตรวจสอบด้วยเทคนิค XRD และวิเคราะห์ห้องปฏิบัติการโดยใช้โปรแกรมอีวา (Eva program) พบว่าเซอร์โคไลต์ Y ที่สังเคราะห์ได้มีบางส่วนที่เป็นเฟสอสัมฐานะปะบันอยู่กับตัวอย่าง ดังจะเห็นได้จากพีคที่มีช่วงกว้าง (Broad peak) ดังรูปที่ 2

สำหรับสารประกอบคล้ายไฮโดรทัลไชต์ที่สังเคราะห์ได้พบว่า ลักษณะของดิเฟรคโตแกรมค่อนข้างแตกต่างจากไฮโดรทัลไชต์ของมาตรฐาน JCPDS โดยเกิดการซีพท์ หรือเคลื่อนของค่า 2θ ไปทางด้านซ้ายของดิเฟรคโตแกรมค่อนข้างมาก ซึ่งอาจเป็นผลมาจากการมีไออันร่วม (Counter ion) ที่แตกต่างกันในโครงสร้างผลึก ส่งผลทำให้โครงสร้างเกิดการเปลี่ยนแปลงในระยะห่างระหว่างระนาบผลึก (D - spacing) โดยสารประกอบคล้ายไฮโดรทัลไชต์ที่สังเคราะห์ได้มีระยะห่างระหว่างระนาบผลึก (003) เท่ากับ 8.07 อังสตรอม ซึ่งมากกว่า

ระยะห่างระหว่างระนาบผลึกของไฮโดรทัลไชต์จากมาตรฐาน JCPDS (7.59 องศาครอम) 0.48 องศาครอม อย่างไรก็ถือกันว่า ของดิฟเฟรคโตแกรมที่ได้ มีลักษณะคล้ายคลึงกับสารประกอบคล้ายไฮโดรทัลไชต์ที่สังเคราะห์ได้ในงานวิจัยของ Wiyantoko et al. [8] (รูปที่ 2)

รูปที่ 2 ดิฟเฟรคโตแกรมของซีโอໄไลต์ Y (A) และสารประกอบคล้ายไฮโดรทัลไชต์ (B)

3.2 ผลการศึกษาหาสัดส่วนขององค์ประกอบที่เหมาะสมการขึ้นรูปซีโอໄไลต์เป็นเซรามิกส์พรุน

ผลการศึกษาพบว่าปริมาณถ่านไม่มีผลต่อการเพิ่มขึ้นของความพรุนในโครงสร้างของเซรามิกส์โดยปริมาณถ่านไม่ที่เพิ่มขึ้นส่งผลให้เซรามิกส์ที่ผ่านการเผามีช่องว่างที่เพิ่มขึ้นอัตราการเพิ่มความพรุนปรากฏเพิ่มขึ้นดังตารางที่ 3 แต่พบว่าเมื่อเพิ่มปริมาณถ่านไม้เป็น 26 %v/v พบร่วมกันของความร้อนและเกิดการหลุดล่วงของวัสดุระหว่างการใช้งาน ดังนั้องค์ประกอบที่เหมาะสมที่สุดในการขึ้นรูปคือองค์ประกอบที่มีส่วนผสมของถ่านไม้ 16 %v/v หรือมีส่วนที่เพาใหม่ได้ 40 %v/v

ตารางที่ 3 คุณสมบัติทางกายภาพของเซรามิกส์พรุน

Combustible phase	Apparent porosity (%)	Open pore	Water absorption (%)	Bulk density (g/cm ³)
CMC	Charcoal (%v/v)			
24	0	54.82	0.52	52.16
24	6	57.60	0.54	54.22
24	16	67.57	0.68	67.73
24	26	70.34	0.79	78.80
				0.93
				0.89

3.3 ผลการศึกษาหาสัดส่วนซีโอໄไลต์ Y และสารประกอบคล้ายไฮโดรทัลไชต์ที่เหมาะสมในการบำบัดสารในน้ำเสียด้วยวิธีแบบแบบตซ์

ผลการศึกษาพบว่า เซรามิกส์พรุนที่มีองค์ประกอบของสารประกอบคล้ายไฮโดรทัลไชต์ เพิ่มขึ้นมีแนวโน้มในการดูดซับสารที่มีประจุลบเพิ่มมากขึ้น นอกจากนี้การเพิ่มขึ้นของสัดส่วนสารประกอบคล้ายไฮโดรทัลไชต์ ทำให้สัดส่วนของซีโอໄไลต์ในเซรามิกส์พรุนลดลงจึงทำให้ความสามารถในการดูดซับแอมโมเนียมในน้ำเสียมีแนวโน้มลดลง อย่างไรก็ตามจากการศึกษาพบว่าการดูดซับแอมโมเนียมในน้ำเสียมีแนวโน้มเพิ่มขึ้นในเซรามิกส์พรุนที่มีสัดส่วนของสารประกอบคล้ายไฮโดรทัลไชต์เท่ากับ 20%v/v ขององค์ประกอบของถ่านไม้ ซึ่งอาจเป็นผลจากกลไกการดูดซับที่ซับซ้อนขึ้น (ตารางที่ 4) ดังนั้นสัดส่วนของสารประกอบคล้ายไฮโดรทัลไชต์ที่เหมาะสมที่สุดคือ 20%v/v ขององค์ประกอบของถ่านไม้ทั้งหมด หรือ 12 %v/v ขององค์ประกอบในการขึ้นรูปเซรามิกส์พรุนทั้งหมด

ตารางที่ 4 ประสิทธิภาพการบำบัดสารในน้ำเสียชุมชนโดยใช้เซรามิกส์พรุนที่มีสัดส่วนของสารประกอบคล้ายไฮโดรทัลไชต์ต่างกันโดยการศึกษาแบบแบบตซ์

Hydrotalcite-like compound content% of solid phase)	Treatment efficiency percentage ¹			
	PO ₄ ³⁻ -P v/v	NO ₃ ⁻ -N	NH ₃ -N	COD
0	69.66	33.34	32.8	40.00
5	71.81	42.87	26.18	40.00
10	73.49	66.67	20.02	40.00
20	78.19	90.47	29.06	40.00

¹ น้ำเสียเริ่มต้นมีปริมาณ PO₄³⁻-P NO₃⁻-N NH₃-N และ COD เท่ากับ 12.12 mg/L, 6.36 mg/L, 369.79 mg/L และ 160.00 mg/L ตามลำดับ pH = 8.6

3.4 ผลการศึกษาความสามารถในการบำบัดสารในน้ำเสียชุมชนด้วยเซรามิกส์พรุนที่เตรียมขึ้น ด้วยวิธีแพคคอลัมน์

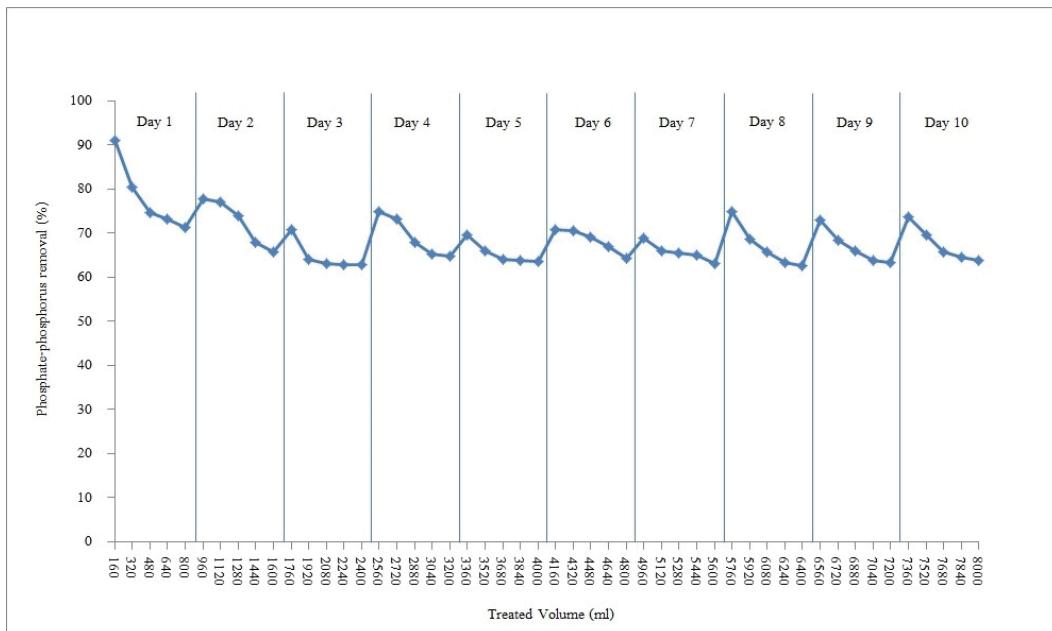
3.4.1 ผลการศึกษาระยะเวลาการกักขั้นที่เหมาะสม

จากการศึกษาพบว่าระยะเวลาการบำบัดที่เพิ่มขึ้นส่งผลต่อการบำบัดที่มากขึ้น เนื่องจากปฏิกิริยาการดูดซับสามารถเกิดได้สมบูรณ์มากยิ่งขึ้น โดยตารางที่ 5 แสดงประสิทธิภาพการบำบัดที่มากขึ้นตั้งแต่ 90-120 นาที แต่เนื่องจากประสิทธิภาพการบำบัดที่ 90 นาที และ 120 นาที ไม่แตกต่างกันมากนัก ดังนั้นระยะเวลาที่เหมาะสมในการบำบัดควรอยู่ที่ 90 นาที

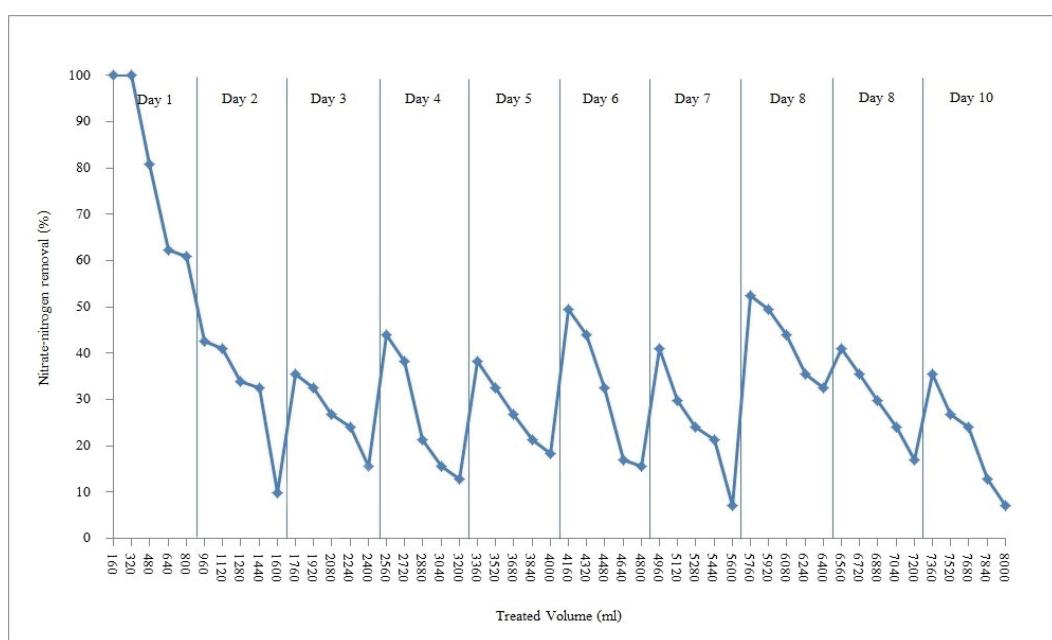
ตารางที่ 5 ประสิทธิภาพการบำบัดสารในน้ำเสียชุมชนโดยใช้เชรามิกส์พรุนที่ระยะเวลาภักกี้ต่างกัน

Retention time (min)	Treatment efficiency percentage ¹			
	PO ₄ ³⁻ -P	NO ₃ ⁻ -N	NH ₃ -N	COD
30	79.45	88.24	27.58	30.00
60	89.84	94.52	33.41	60.00
90	92.39	100.00	36.59	70.00
120	92.59	100.00	41.17	70.00

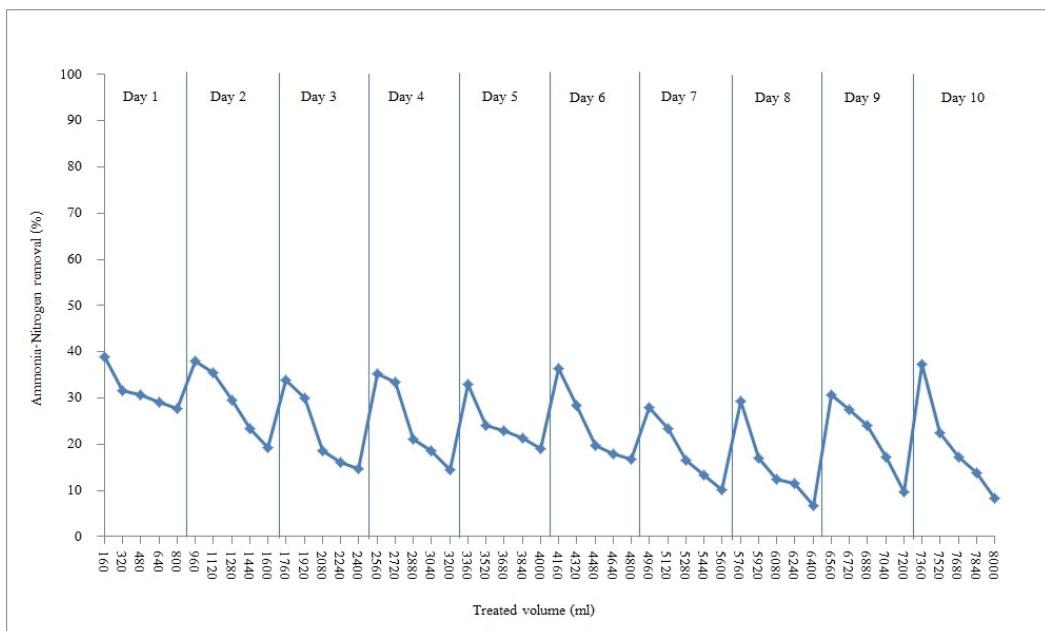
¹ น้ำเสียเริ่มต้นมีปริมาณ PO₄³⁻-P NO₃⁻-N NH₃-N และ COD เท่ากับ 41.51 mg/L, 22.12 mg/L, 354.04 mg/L และ 160.00 mg/L ตามลำดับ pH = 6.9

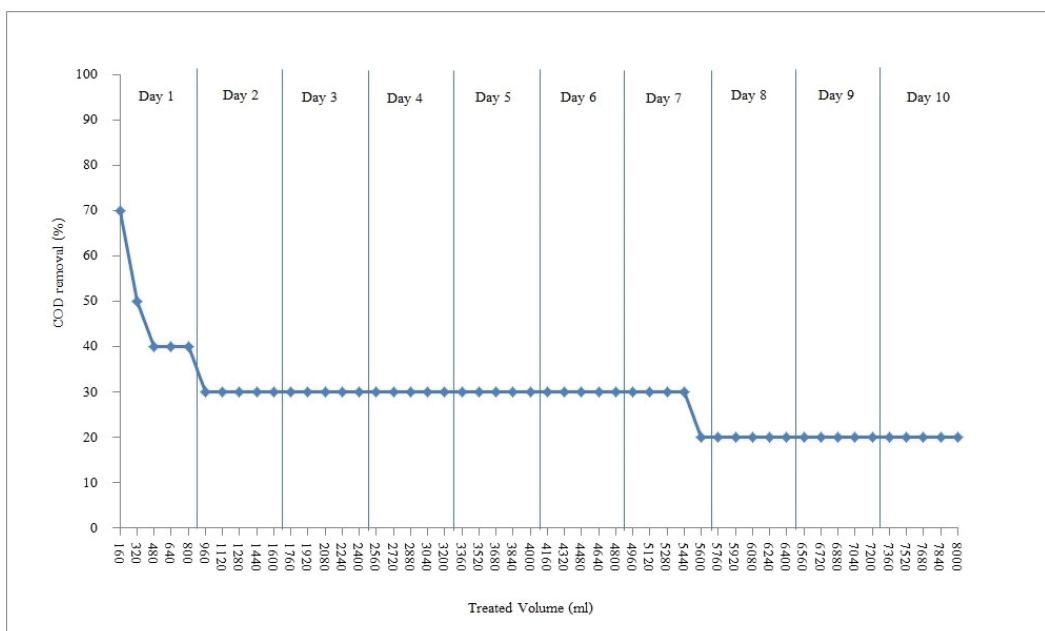

3.4.2 ผลการศึกษาความสามารถในการบำบัดสารในน้ำเสียชุมชนด้วยเชรามิกส์พรุนที่เตรียมขึ้น

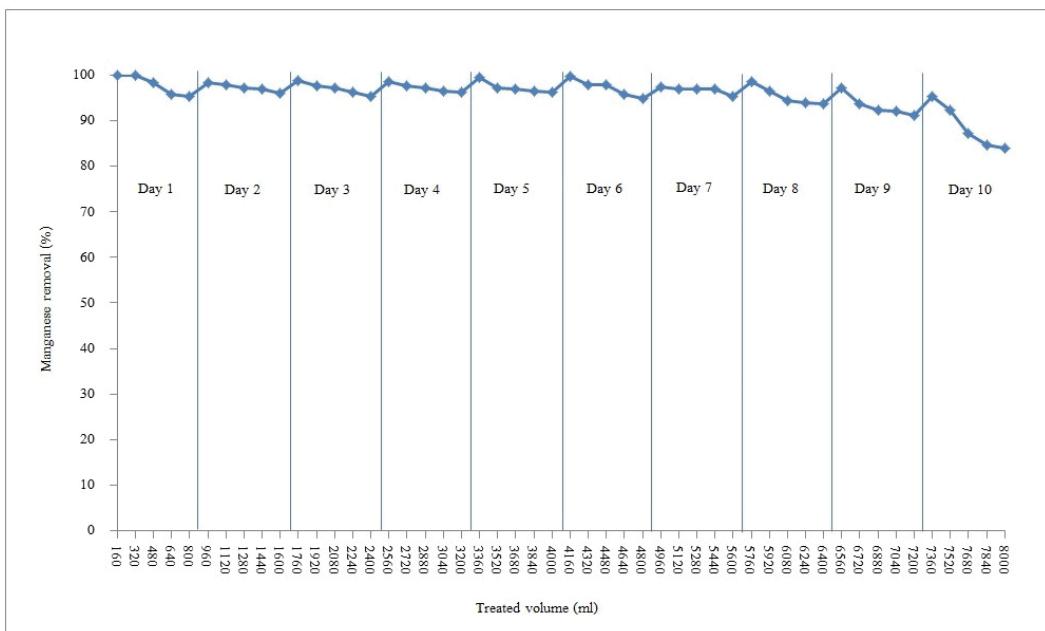
ทำการศึกษาเดินน้ำเสียชุมชนครั้งละ 160 มิลลิลิตร ในคอลัมน์แก้วที่บรรจุเชรามิกส์พรุน 139.52 กรัม และขังน้ำเป็นเวลา 90 นาที ก่อนปล่อยน้ำออกด้วยอัตราการไหล 4 มิลลิลิตร ต่อวินาที ก่อนผ่านคอลัมน์น้ำเสียชุมชนมีความเข้มข้นของ PO₄³⁻-P, NO₃⁻-N, NH₃-N, COD, Mn และ Fe เท่ากับ 41.51, 22.12, 354.04, 160.00, 0.35 และ 0.46 mg/L ตามลำดับ และมีค่า pH เท่ากับ 6.9 ในครั้งแรกของการบำบัดเชรามิกส์พรุนสามารถบำบัด PO₄³⁻-P, NO₃⁻-N, NH₃-N, COD, Mn และ Fe ได้สูงสุดเท่ากับ 91.12% 100.00% 38.94% 70.00% 100.00% และ 100.00% ตามลำดับ นอกจากนี้จากการศึกษาในแต่ละวันพบว่าประสิทธิภาพการบำบัดจะสูงที่สุดในน้ำที่ไหลผ่านวัสดุครั้งแรกของแต่ละวันและต่อจากนั้นจะลดลงอย่างต่อเนื่องและเพิ่มขึ้นอีกในวันถัดไป ซึ่งมลสารที่เกิด

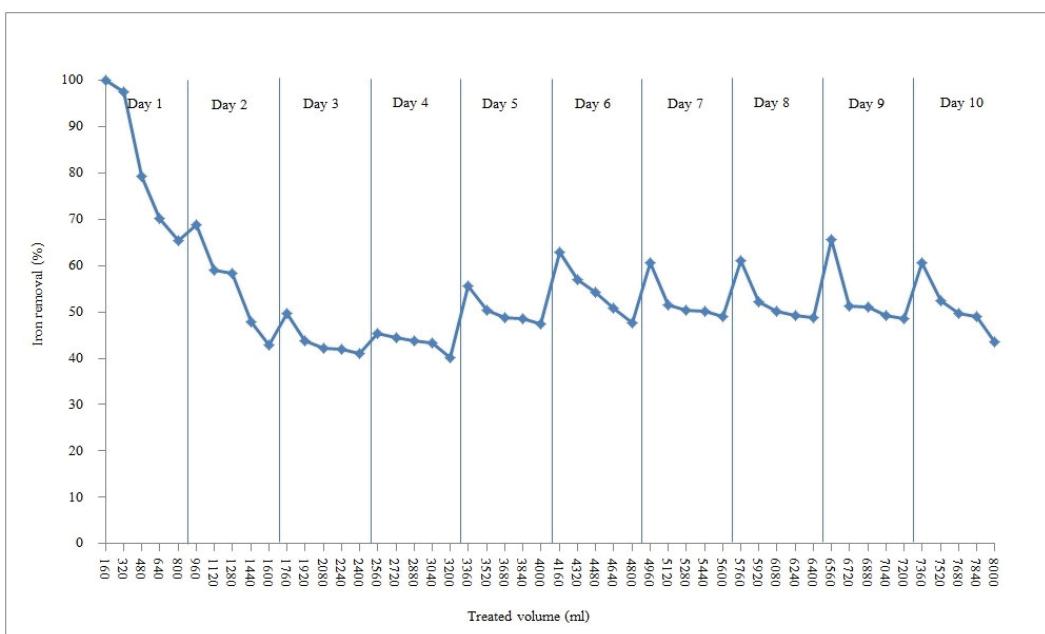

ปรากฏการณ์แบบนี้ได้แก่ PO₄³⁻-P, NO₃⁻-N, NH₃-N, Mn และ Fe (ยกเว้น COD เนื่องจาก COD เป็นการวัดสารอินทรีย์ในน้ำเสียในรูปของสารอินทรีย์ที่ย่อยสลายได้และไม่ได้ทางชีวภาพซึ่งอาจเป็นสารลดแรงตึงผิวที่อยู่ในน้ำทึ้งจากหอพักและอาคารต่างๆ) (รูปที่ 3 – 8) ซึ่งเป็นที่น่าสังเกตว่ามลสารดังกล่าวเป็นธาตุอาหารหลักที่ใช้ในการเจริญเติบโตของแบคทีเรีย [9] จึงอาจเป็นไปได้ว่าการดูดซับมลสารของเชรามิกส์พรุนทำให้ธาตุอาหารเหล่านี้เกิดการสะสมและเข้มข้นขึ้นบนพื้นผิวของวัสดุทำให้แบคทีเรียเกิดการเจริญเติบโต ทำให้วัสดุได้รับการรีเจเนอเรตทางชีวภาพเมื่อหยุดการบำบัดในตอนกลางคืน การบำบัดน้ำในระหว่างวันเริ่มตั้งแต่เวลา 9.30 – 17.00 น. สามารถบำบัดน้ำได้ 5 ครั้ง (800 ml) และประสิทธิภาพการบำบัด PO₄³⁻-P, NO₃⁻-N, NH₃-N, COD, Mn และ Fe เปลี่ยนไปแต่ละครั้ง จากการศึกษาทั้ง 10 วัน แสดงดังตารางที่ 6

ตารางที่ 6 ประสิทธิภาพการบำบัดสารในน้ำเสียชุมชนเฉลี่ยในแต่ละครั้งจากการศึกษาทั้ง 10 วัน


Pollutants	Times of treatment				
	1 st	2 nd	3 rd	4 th	5 th
PO ₄ ³⁻ -P	74.56	70.40	67.62	65.71	64.56
NO ₃ ⁻ -N	46.71	41.92	33.29	25.75	19.05
NH ₃ -N	34.09	27.36	21.28	18.19	14.68
COD	31.00	29.00	28.00	28.00	27.00
Mn	98.36	96.84	95.57	94.57	93.90
Fe	63.00	55.93	52.82	50.02	47.39


รูปที่ 3 ประสิทธิภาพการบำบัด $\text{PO}_4^{3-}\text{-P}$ ของเซรามิกส์พรุนจากการศึกษาทั้ง 10 วัน


รูปที่ 4 ประสิทธิภาพการบำบัด $\text{NO}_3^- \text{-N}$ ของเซรามิกส์พรุนจากการศึกษาทั้ง 10 วัน


รูปที่ 5 ประสิทธิภาพการบำบัด $\text{NH}_3\text{-N}$ ของเซรามิกส์พรุนจากการศึกษาทั้ง 10 วัน

รูปที่ 6 ประสิทธิภาพการบำบัด COD ของเซรามิกส์พรุนจากการศึกษาทั้ง 10 วัน

รูปที่ 7 ประสิทธิภาพการบำบัด Mn ของเซรามิกส์พรุนจากการศึกษาทั้ง 10 วัน

รูปที่ 8 ประสิทธิภาพการบำบัด Fe ของเซรามิกส์พรุนจากการศึกษาทั้ง 10 วัน

4. สรุป

เซรามิกส์พรุนที่เตรียมขึ้นจากเซโลไลต์ Y และสารประกอบคล้ายไฮโดรทัลไชต์ เป็นวัสดุดูดซับที่มีประสิทธิภาพในการบำบัดมลสารในน้ำเสียชุมชนโดยสามารถเกิดการดูดซับมลสารโดยผ่านกลไกการแลกเปลี่ยนไอออนทั้งประจุบวกและประจุลบซึ่งเป็นผลมาจากการความสามารถของวัสดุที่นำมาใช้ในการขึ้นรูปเป็นเซรามิกส์พรุน นอกจากนี้เซรามิกส์พรุนยังมีความสามารถในการรีเจเนอเรตทางชีวภาพเมื่อหยุดการบำบัดในตอนกลางคืน ทำให้สามารถถูกใช้งานในการบำบัดมลสารในน้ำเสียได้อย่างต่อเนื่องโดยไม่จำเป็นต้องทำลายวัสดุทึ้งเมื่อผ่านการใช้งาน

4. เอกสารอ้างอิง

- [1] Saravanakumar, K., & Kumar, A. (2013). Removal of phenol from aqueous solution by adsorption using zeolite. African Journal of Agricultural Research, 8(23), 2965 – 2969.
- [2] Sopkova, A., & Janokova, E. (1998). An insecticide stabilized by natural zeolite. Jurnal of Thermal Analysis, 53, 477 – 485.
- [3] Sohrabnezhad, S., & Pourahmad, A. (2010). Comparison adsorption of new methylene blue dye in zeolite and nanocrystal Zeolite. Desalination, 256, 84 – 89.
- [4] Rahman, M. M., Awang, M. B., & Yusof, A. M. (2012). Preparation, characterization and application of zeolite – Y (NaY) for water filtration. Australian Journal of Basic and Applied Science, 6(1), 50 – 54.
- [5] Song, W., Li, G., Grassian, V. H., & Larsen, S. C. (2005). Development of improved materials for environmental applications: nanocrystalline NaY zeolites. Environ. Sci. Technol., 39, 1214 – 1220.
- [6] Kyzas, G. Z., & Kostoglou, M. (2014). Green adsorbents for wastewater: a critical review. Materials, 7, 333 – 364.
- [7] APHA, AWWA & WEF. (1995). Standard Method for Examination of Water and Wastewater (19th ed). Washington D.C.: American Public Health Association.
- [8] Wiyantoko, B., Kurniawati, P., Purbaningtias, T. E., & Fatimah, I. (2015). Synthesis and characterization of hydrotalcite at different Mg/Al molar ratios. Procedia Chemistry, 17, 21 – 26.
- [9] Torda, K. (2016). Nutrition and Growth of Bacteria. Retrieved from <http://textbookofbacteriology.net/nutgro.html>.

