

การประเมินประสิทธิภาพการบำบัดน้ำเสียที่มีปริมาณไนโตรเจนสูงด้วยระบบอสบีอาร์

Assessment of nitrogen-rich wastewater treatment using SBR

ณรงค์ จันทรชา^{1,2}, Hang Thai Le^{1,2}, คุณางค์ รัตนานิคม^{3*}, อุปัมภ์ นาครักษ์^{2,4}, วิลาวัลย์ คณิตชัยเดชา^{1,2*}

¹ภาควิชาวิศวกรรมโยธา คณะวิศวกรรมศาสตร์ มหาวิทยาลัยนเรศวร

²สถานวิจัยเพื่อความเป็นเลิศด้านวัตกรรมและเทคโนโลยีเพื่อการบำบัดน้ำ มหาวิทยาลัยนเรศวร

³ภาควิชาชีวเคมีและคณิตศาสตร์ คณะเทคโนโลยีอุตสาหกรรมเกษตร

มหาวิทยาลัยเทคโนโลยีราชมงคลล้านนา วิทยาเขตกำแพงดิน

⁴ภาควิชาคุณภาพการคุณวิศวกรรมศาสตร์ มหาวิทยาลัยนเรศวร

* Corresponding authors e-mail: ³khakhanang_r@yahoo.com, ^{1,2}wilawank1@gmail.com

บทคัดย่อ

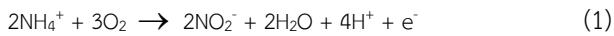
งานวิจัยนี้เป็นการศึกษาการบำบัดน้ำเสียสังเคราะห์ที่มีปริมาณไนโตรเจนสูงด้วยระบบอสบีอาร์ (Sequencing batch reactor; SBR) โดยการทำงานของระบบประกอบด้วย การเติมอากาศ 3 ชั่วโมง การหยุดเติมอากาศ 4 ชั่วโมง และการตกตะกอน 1 ชั่วโมง จำนวน 3 รอบ (รวมระยะเวลาการบำบัดทั้งหมด 24 ชั่วโมง) จากการบำบัดน้ำเสียไนโตรเจนที่ภาระในไนโตรเจนต่าง ๆ พบร่วม ประสิทธิภาพการบำบัดสูงขึ้นตามภาระไนโตรเจนที่เพิ่มขึ้น กล่าวคือ ประสิทธิภาพการบำบัดเป็น 36%, 50%, 64% และ 82% ที่ภาระไนโตรเจน 0.025, 0.050, 0.075 และ 0.100 กก./ในไนโตรเจนต่อ ลบ.ม.-วัน ตามลำดับ ค่า MLSS, MLVSS และภาระสลัดด์มีค่าประมาณ 1.6 กรัมต่อลิตร, 0.7 กรัมต่อลิตร และ 0.102 กก./ในไนโตรเจนต่อ กก. จุลินทรีย์-วัน ตามลำดับ สำหรับกลไกสำคัญในการกำจัดไนโตรเจนของระบบ คือ กระบวนการไนตริฟิเคชัน ซึ่งเกิดขึ้นได้ดีในช่วงการเติมอากาศ และกระบวนการดีไนตริฟิเคชัน ที่เกิดขึ้นได้ดีในช่วงการหยุดเติมอากาศ

คำสำคัญ: ระบบบำบัดแบบอสบีอาร์, กระบวนการไนตริฟิเคชัน, กระบวนการดีไนตริฟิเคชัน

Abstract

The treatment of synthetic nitrogen-rich wastewater using SBR (Sequencing batch reactor) was studied in this research. The SBR was operated under a cycle of 3 hours for aerating, 4 hours for non-aerating and 1 hour for settling, and operated for 3 cycles (total retention time 24 hours). The results showed that the nitrogen removal efficiency was increased by nitrogen loading; 36% at nitrogen loading 0.025 kg N/m³-day, 50% at nitrogen loading 0.050 kg N/m³-day, 64% at nitrogen loading 0.075 kg N/m³-day and 82% at nitrogen loading 0.100 kg N/m³-day. The MLSS, MLVSS and sludge loading were 1.6 g/L, 0.7 g/L and 0.102 kg N/kg MLVSS-d respectively. The main mechanisms of nitrogen removal in SBR were nitrification which mainly occurred in aeration and denitrification which occurred in non-aeration.

Key words: SBR system, Nitrification, Denitrification


1. ที่มาและความสำคัญ

น้ำเสียที่มีการปนเปื้อนของไนโตรเจนสูง พบมากในน้ำเสียจากชุมชน และน้ำเสียจากอุตสาหกรรมอาหารและผลิตภัณฑ์จากนม โดยทั่วไปในไนโตรเจนปนเปื้อนในน้ำเสียสามารถพบรูปแบบ ได้แก่ แอมโมเนียม-ไนโตรเจน ($\text{NH}_4\text{-N}$), ไนโตรท-ไนโตรเจน ($\text{NO}_2\text{-N}$), ไนโตรท-ไนโตรเจน ($\text{NO}_3\text{-N}$) และอินทรีย์ในไนโตรเจน ซึ่งปริมาณการปนเปื้อนของไนโตรเจนจะขึ้นอยู่กับแหล่งที่มาของน้ำเสียเป็นสำคัญ ตัวอย่างเช่น น้ำเสียชุมชน จะ

พบ $\text{NH}_4\text{-N}$ ปนเปื้อนประมาณ 20-72 มิลลิกรัมต่อลิตร [1] น้ำเสียจากอุตสาหกรรมนม พบในไนโตรเจนปนเปื้อนทั้งหมดประมาณ 70 มิลลิกรัมต่อลิตร [2] นอกจากนี้น้ำออกจากระบบบำบัดบางประเภท เช่น ระบบบำบัดแบบไม่ใช้อากาศ (Anaerobic digestion) และบ่อบังเกอะ (landfill leachate) พบ $\text{NH}_4\text{-N}$ สูงถึง 300 มิลลิกรัมต่อลิตร [3-4] เมื่อน้ำเสียในไนโตรเจนเหล่านี้ปะละออยสู่แหล่งน้ำธรรมชาติโดยปราศจากการบำบัดที่เหมาะสมจะส่งผลต่อกุญภาพของแหล่งน้ำ เนื่องจากไนโตรเจนเป็นธาตุอาหารสำคัญที่พืชใช้ในการเจริญเติบโต ส่งผลให้พืชน้ำเจริญเติบโตอย่างรวดเร็วผิดปกติ หรือที่เรียกว่า

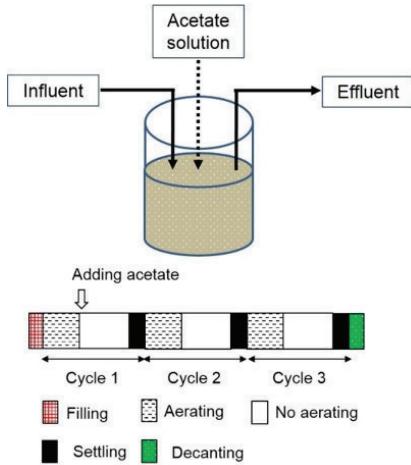
ปรากฏการณ์ยูโตรฟิเคชั่น (Eutrophication) และปรากฏการณ์นี้เป็นผลให้ปริมาณออกซิเจนในแหล่งน้ำลดลง สัตว์น้ำไม่สามารถดำรงชีวิตอยู่ได้ และการใช้ประโยชน์จากแหล่งน้ำลดลง รวมถึงเกิดมลพิษทางน้ำ ซึ่งจะส่งผลโดยตรงต่อสภาวะเศรษฐกิจและสังคมของชุมชนในพื้นที่

ปัจจุบันเทคโนโลยีการบำบัดน้ำเสียในไตรเจนสามารถทำได้หลายวิธี เช่น การกรองด้วยเยื่อเลือกผ่าน (Membrane filtration) การดูดซับด้วยโซลิโนไลท์ (Zeolite adsorption) และการบำบัดด้วยเทคโนโลยีชีวภาพ [5-7] โดยวิธีที่นิยมใช้กันอย่างแพร่หลายในระดับชุมชนและอุตสาหกรรม ก็คือ การใช้เทคโนโลยีชีวภาพ เนื่องจากเสียค่าใช้จ่ายในการติดตั้งและดำเนินระบบน้อย และสามารถบำบัดน้ำเสียได้ในปริมาณมาก หลักการสำคัญของการบำบัดน้ำเสียในไตรเจนด้วยเทคโนโลยีชีวภาพ ก็คือ NH_4^+ ที่ปนเปื้อนในน้ำเสียจะถูกออกซิเดชันเป็น NO_2^- และ NO_3^- (ดังสมการ 1 และ 2) ด้วยจุลินทรีย์จำพวกไนโตรบัคเตอร์ (*Nitrobacter* sp.) และไนโตรแบคเตอร์ (*Nitrosomonas* sp.) ตามลำดับ [8] ซึ่งเรียกว่า กระบวนการไนโตรฟิเคชั่น (Nitrification) กระบวนการนี้จะเกิดได้อย่างสมบูรณ์ภายใต้สภาวะที่มีออกซิเจนสูง จากนั้น NO_3^- จะถูกสลายให้เป็น N_2 เป็นผลิตภัณฑ์สุดท้าย (ดังสมการ 3) ด้วยจุลินทรีย์จำพวกดีไนตริฟิเคชั่น (Denitrification) ซึ่งต้องอาศัยอินทรีย์คาร์บอน เช่น เมทานอล และอะซิตอิเท เป็นตัวให้อิเล็กตรอน ที่สำคัญกระบวนการนี้จะเกิดได้ภายใต้สภาวะที่ไม่มีออกซิเจน

สำหรับหนึ่งในระบบบำบัดที่นิยมใช้ในการบำบัดน้ำเสียในไตรเจนแบบชีวภาพ ก็คือ ระบบເອສບັບອົບ (Sequencing batch reactor; SBR) เนื่องจากการทำงานของระบบนี้จะมีขั้นตอนของการเติมอากาศ และไม่เติมอากาศ ซึ่งเหมาะสมต่อการเกิดกระบวนการไนโตรฟิเคชั่นและดีไนตริฟิเคชั่น ระบบนี้จะเป็นการบำบัดแบบเติมน้ำเสียเข้า-ถ่ายน้ำ โดยประกอบด้วย 5 ขั้นตอน ได้แก่ การเติมน้ำเสีย (Fill) การบำบัด (React) การตกตะกอน (Settle) การถ่ายน้ำทิ้ง (Draw) และการพักระบบ (Idle) อย่างไรก็ตาม ระยะเวลาในขั้นตอนการบำบัด รวมถึงระยะเวลาที่เหมาะสมในการบำบัดน้ำเสียยังไม่มีการระบุที่แน่ชัด ดังนั้น งานวิจัยนี้จึงมุ่งเน้นที่จะศึกษาประสิทธิภาพของการบำบัดน้ำเสียในไตรเจน โดยใช้ระบบເອສບັບອົບที่ออกแบบและดำเนินระบบภายใต้ระยะเวลาหนึ่ง รวมถึงศึกษาผลของการบำบัดในไตรเจนเกิดขึ้นภายในระบบເອສບັບອົບอีกด้วย

2. วิธีทำการทดลอง

2.1. การเตรียมน้ำเสียในไตรเจน


ในงานวิจัยนี้จะใช้น้ำเสียในไตรเจนสังเคราะห์เป็นหลัก ซึ่งเตรียมได้จากการผสมสารเคมี ดังต่อไปนี้ NH_4Cl 0.04-0.15 กรัมต่อลิตร, NaHCO_3 0.48 กรัมต่อลิตร, KH_2PO_3 0.02 กรัมต่อลิตร, MgSO_4 0.06 กรัมต่อลิตร, CaCl_2 0.36 กรัมต่อลิตร, FeSO_4 0.003 กรัมต่อลิตร และธาตุอาหาร 0.5 มิลลิลิตรต่อลิตร [10] โดยธาตุอาหารประกอบด้วยสารเคมีต่างๆ ดังนี้ $\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$ 1.5 กรัมต่อลิตร, H_3BO_3 0.15 กรัมต่อลิตร, $\text{CuSO}_4 \cdot 5\text{H}_2\text{O}$ 0.03 กรัมต่อลิตร, KI 1.18 กรัมต่อลิตร, $\text{MnCl}_2 \cdot 4\text{H}_2\text{O}$ 0.12 กรัมต่อลิตร, $\text{ZnSO}_4 \cdot 7\text{H}_2\text{O}$ 0.12 กรัมต่อลิตร และ CoCl_2 0.15 กรัมต่อลิตร [10] น้ำเสียที่สังเคราะห์ได้จะมีความเข้มข้นของ NH_4^+ 10-40 มิลลิกรัมต่อลิตร, NO_2^- และ NO_3^- 0.5-1 มิลลิกรัม

2.2. การเตรียมสารละลายน้ำเสีย

สารละลายน้ำเสียจะใช้เป็นแหล่งอินทรีย์คาร์บอน สำหรับกระบวนการดีไนตริฟิเคชั่น ซึ่งความเข้มข้นของ CH_3COONa อยู่ที่ 0.07-0.27 กรัมต่อลิตร โดยสัดส่วนของคาร์บอนและไนโตรเจนในระบบ (C/N) เท่ากับ 2 [11]

2.3. การติดตั้งและดำเนินระบบເອສບັບອົບ

การศึกษาประสิทธิภาพของระบบເອສບັບອົບในงานวิจัยนี้ เป็นการศึกษาเชิงทดลองในห้องปฏิบัติการ โดยใช้แบบจำลองของระบบເອສບັບອົບปริมาตร 12 ลิตร ประกอบด้วยปั๊มอากาศ (อัตรา 0.5 ลิตรต่อนาที) เครื่องปั๊มกรอง (อัตรา 200 รอบต่อนาที) และระบบปั๊มน้ำเข้า-ออก การทำงานของระบบເອສບັບອົບนี้ ประกอบด้วยการเติมน้ำเสีย 5 นาที การบำบัด 7 ชั่วโมง (เติมอากาศ 3 ชั่วโมง การหยุดเติมอากาศ 4 ชั่วโมง) การตกตะกอน 1 ชั่วโมง และการถ่ายน้ำทิ้ง 5 นาที โดยขั้นตอนการบำบัดและการตกตะกอนจะดำเนินการซ้ำ 3 รอบ ดังแสดงรูปที่ 1 ซึ่งเงื่อนไขการดำเนินระบบดังกล่าวมาจากการปรับปรุงงานวิจัยก่อนหน้านี้ [13] นอกจากนี้การเติมสารละลายน้ำเสีย ปริมาตร 50 มิลลิลิตร จะทำในชั่วโมงแรกของการหยุดเติมอากาศ

รูปที่ 1 ระบบເອສປີອັບແລະການດຳເນີນຮບບ

ตารางที่ 1 ກາວວິເກາຮວິເຄຣະທົ່ວຄຸນກາພນ້າ [12]

ພາຮາມເມື່ອຕົ້ນ	ໜ່າຍ	ຄວາມສື່ງ	ວິເກາຮວິເຄຣະທີ່
ຄວາມເປັນກຽດ-ດ່າງ (pH)	-	ທຸກວັນ	pH meter
ອອກພື້ນລະຍານ້າ (Dissolved oxygen; DO)	ມີລິກິຮັມ ຕ່ອລືຕົກ	ທຸກວັນ	DO meter
NH ₄ -N	ມີລິກິຮັມ ຕ່ອລືຕົກ	ທຸກວັນ	Phenate method
NO ₂ -N	ມີລິກິຮັມ ຕ່ອລືຕົກ	ທຸກວັນ	Colorimetric method
NO ₃ -N	ມີລິກິຮັມ ຕ່ອລືຕົກ	ທຸກວັນ	Ultraviolet spectrophotometric screening method
ອິນທີຣີກາຣົນອອນ	ມີລິກິຮັມ ຕ່ອລືຕົກ	ທຸກວັນ	COD (Chemical oxygen demand) analyser
ມາລຕະກອນຈຸລິນທີຣີ (Mixed liquor suspended solids; MLSS)	ກັ່ນຕ້ອ ລືຕົກ	2 ຄັ້ງ/ ສັບດາໍາ	Total, fixed and volatile solids in solid and semisolid samples
ມາລຕະກອນຈຸລິນທີຣີ ຮະເຫຍຸ່ງ່າຍ (Mixed liquor volatile suspended solids; MLVSS)	ກັ່ນຕ້ອ ລືຕົກ	2 ຄັ້ງ/ ສັບດາໍາ	Total, fixed and volatile solids in solid and semisolid samples
ຕັ້ງນີ້ວິມາຕົກຂອງ ດະກອນ (Sludge volume index; SVI)	ມີລິກິຮັມ ຕ່ອກຮັມ	2 ຄັ້ງ/ ສັບດາໍາ	Settleability

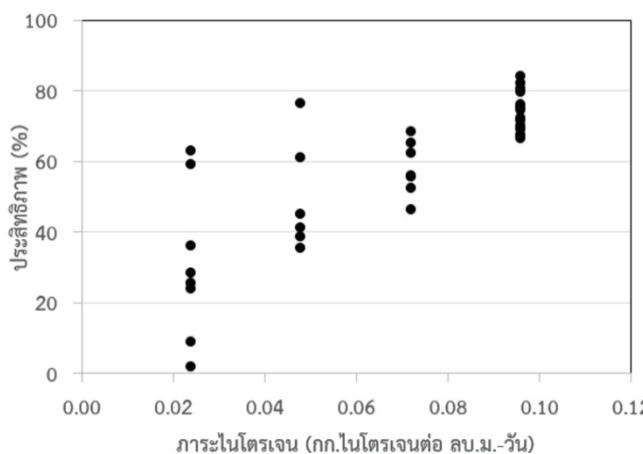
ສັດຈິກທີ່ໃຊ້ໃນຮບບເອສປີອັບ ນຳມາຈາກຮບບບຳບັດຕະກອນເຮັດແບບເຕີມອາກາສ (Aerated activated sludge system) ຂອງໂຮງພາຍາບາລວັງທອງ ຈັງຫວັດພິບຜູ້ໄລກ ເມື່ອເຕີມສັດຈິກເຂັ້ມຂັ້ນ ປຣິມາຕົກ 200 ມິລິລິຕົກ ລົງໃນຮບບ ຈາກນັ້ນເຕີມນ້ຳສີຢີໃນໂຕຣເຈນຈົນຄົງປຣິມາຕົກ 12 ລົດ ໃນແຕ່ລະວັນ ນ້ຳປຣິມາຕົກ 10 ລົດ ຈະຄູກປັ້ນອອກຈາກຮບບ ແລະແຫນທີ່ດ້ວຍນ້ຳສີຢີໃນໂຕຣເຈນ ອັກຄັ້ງ ຮະຫວ່າງດຳເນີນຮບບ ຄວາມເຂັ້ມຂັ້ນຂອງ NH₄-N ໃນນ້ຳເສີຢີໃນໂຕຣເຈນຈະພື້ນຈາກ 10 ເປັນ 20, 30 ແລະ 40 ມິລິກິຮັມຕ່ອລືຕົກ ຕາມລຳດັບ ຈຶ່ງຄືດເປັນກະລຸນາໃນໂຕຣເຈນ (Nitrogen loading) 0.025, 0.050, 0.075 ແລະ 0.100 ກກ.ໃນໂຕຣເຈນຕ່ອລືບ.ມ.-ວັນ

2.4. ການຄໍານວນແລະວິເຄຣະທີ່

ປະສິທິອີກາພຂອງຮບບເອສປີອັບ ກໍານວນໄດ້ຈາກເປົ້ອງເຈັ້ນ ກາຮລັດລົງຂອງໃນໂຕຣເຈນ (NH₄-N, NO₂-N ແລະ NO₃-N) ໃນນ້ຳກ່ອນແລະຫລັງບຳບັດ ແສດງດັ່ງສົມກາຣ 4 ສໍາຫຼັບວິເກາຮວິເຄຣະທີ່ ຄຸນກາພນ້າກ່ອນແລະຫລັງບຳບັດໃນຮ່ວ່າງກາຮທດລອງ ສຽງປິນ ຕາງໆທີ່ 1

$$\text{ປະສິທິອີກາພ} = 1 - \frac{(NH_4-N)_{ກ່ອນ} + (NO_2-N)_{ກ່ອນ} + (NO_3-N)_{ກ່ອນ}}{(NH_4-N)_{ກ່ອນ}} \times 100 \quad (4)$$

3. ກາຮທດລອງ


3.1. ປະສິທິອີກາພຂອງຮບບເອສປີອັບ

ການທຳການຂອງຮບບເອສປີອັບທີ່ອອກແບບໃນການວິຈັຍນີ້ ໃນ 1 ຮອບ ປະກອບດ້ວຍກາຮເຕີມອາກາສ 3 ຊົ່ວໂມງ ກາຮຫຍຸດເຕີມອາກາສ 4 ຊົ່ວໂມງ ແລະກາຮຕກຕະກອນ 1 ຊົ່ວໂມງ ໂດຍຮະບບຈະທຳການທັງໝົດ 3 ຮອບ ຕ່ອກກາຮບຳບັດນ້ຳເສີຢີໃນໂຕຣເຈນແຕ່ລະຄັ້ງໂດຍຈະສຶກພາປະສິທິອີກາພຂອງຮບບທີ່ກາຮໃນໂຕຣເຈນຕ່າງໆ ຕັ້ງແຕ່ 0.025-0.100 ກກ.ໃນໂຕຣເຈນຕ່ອລືບ.ມ.-ວັນ (ດັ່ງຮູບທີ່ 2) ຈາກກາຮສຶກພາພວກວ່າທີ່ກາຮໃນໂຕຣເຈນ 0.025 ກກ.ໃນໂຕຣເຈນຕ່ອລືບ.ມ.-ວັນ ປະສິທິອີກາພກາຮບຳບັດອູ່ຮ່ວ່າງ 2-62% ຄືດເປັນປະສິທິອີກາພກາຮບຳບັດເຊີ່ຍ 36% ຈຶ່ງແສດງຄືກລິກາຮກາຮຈຳຈັດໃນໂຕຣເຈນດ້ວຍກະບວນກາຮໃນຕຣິພິເຄັ້ນແລະຕີ່ໃນຕຣິພິເຄັ້ນຍັງໄມ້ດີນັກ ທັ້ນນີ້ເນື່ອງຈາກສັດຈິກທີ່ໃຊ້ໃນກາຮທດລອງ ມີຈຸລິນທີຣີກຸ່ມໃນຕຣິໄພອິງແລະຕີ່ໃນຕຣິໄພອິງເປັນສັດສ່ວນນ້ອຍ ເມື່ອເທີຍກຸ່ມຈຸລິນທີຣີກຸ່ມອື່ນໆ ອ່າຍ່າໄຮກ້ຕາມ ເມື່ອກາຮໃນໂຕຣເຈນເພີ່ມເຂັ້ນເປັນ 0.050, 0.075 ແລະ 0.100 ກກ.ໃນໂຕຣເຈນຕ່ອລືບ.ມ.-ວັນ ປະສິທິອີກາພກາຮບຳບັດເຊີ່ຍກັບສູງເຂັ້ນເປັນ 50%, 64% ແລະ 82% ຕາມລຳດັບ ຈາກພິກາຮທດລອງນີ້ ແສດງໃຫ້ເຫັນວ່າ ກະບວນກາຮໃນຕຣິພິເຄັ້ນແລະຕີ່ໃນຕຣິພິເຄັ້ນເກີດເຂັ້ນໄດ້ດີທີ່ກາຮໃນໂຕຣເຈນສູງເຂັ້ນ ແລະກຸ່ມຈຸລິນທີຣີໃນຕຣິໄພອິງແລະຕີ່ໃນຕຣິໄພອິງຄືດເປັນຈຸລິນທີຣີທັກໃນຮບບທີ່ກາຮໃນໂຕຣເຈນສູງສຸດ ສັງເກດໄດ້ຈາກປະສິທິອີກາພຂອງຮບບມີຄວາມແນ່ນອນນັກເຂັ້ນ

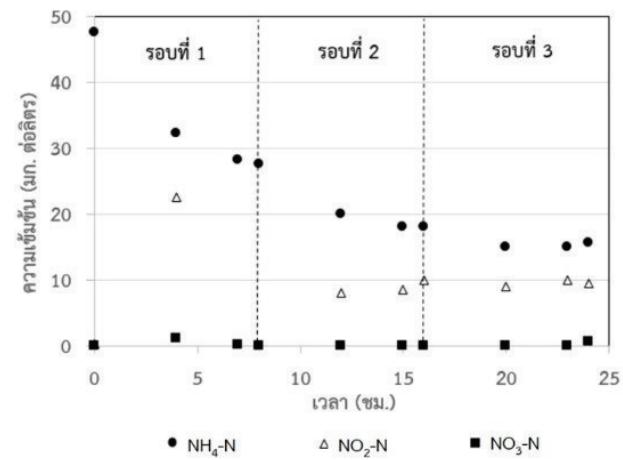
ตารางที่ 2 สรุประสิทธิภาพการบำบัดน้ำเสียในໂຕເຈນ

ภาวะ ໃນໂຕເຈນ (ກກ. ໃນໂຕເຈນ ຕ່ອ ລບ.ມ.- ວັນ)	ປະສິບທີ່ກັບ ແນວໜ້າ (%)	ภาวะສັດຈິ (ກກ.ໃນໂຕເຈນ ຕ່ອງ ກກ. ຈຸລິນທີ່ວັນ)	MLSS (ກຣັມຕ່ອ ລິຕິຣ)	MLVSS (ກຣັມຕ່ອ ລິຕິຣ)	SVI (ມລ. ຕ່ອ ກຣັມ)
0.025	36	0.096	1.6	0.59	44.44
0.050	50	0.098	1.6	0.72	57.32
0.075	64	0.100	1.6	0.62	54.95
0.100	82	0.102	1.6	0.70	58.51

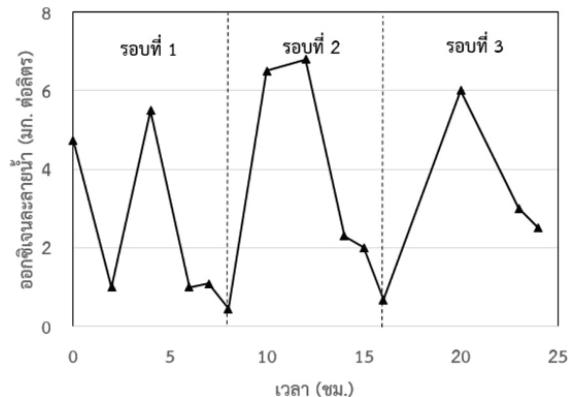
จากตารางที่ 2 จะเห็นได้ว่าในระหว่างดำเนินการทดลองค่า MLSS จะมีค่าประมาณ 1.6 กรัมต่อลิตร ขณะที่ค่า MLVSS เพิ่มขึ้นจาก 0.59 กรัมต่อลิตร ที่ภาวะในໂຕເຈນ 0.025 ກກ.ໃນໂຕເຈນຕ່ອ ລບ.ມ.-ວັນ เป็น 0.70-0.72 ที่ภาวะในໂຕເຈນ สูงขึ้น และเมื่อเปรียบเทียบภาวะສັດຈິທີ່ສັກວະຕ່າງໆ ພບວ່າ ภาวะສັດຈິเพิ่มขึ้นจาก 0.096 ກກ.ໃນໂຕເຈນຕ່ອ ກກ.ຈຸລິນທີ່ວັນ เป็น 0.098, 0.100 และ 0.102 ກກ.ໃນໂຕເຈນຕ່ອ ກກ.ຈຸລິນທີ່ວັນ ທີ່ภาวะในໂຕເຈນ 0.025, 0.050, 0.075 และ 0.100 ກກ.ໃນໂຕເຈນຕ່ອ ລບ.ມ.-ວັນ ตามลำดับ นอกจากนี้ค่า SVI อยู่ระหว่าง 44-58 ມີລັດລິຕິຣຕ່ອກຣັມ ແສດໃຫ້ເຫັນວິສັດຈິມີຄຸນກັບແສມາຮັດຕັດຕົວໄດ້

ຮູບທີ 2 ປະສິບທີ່ກັບແນວໜ້າໃນໂຕເຈນທີ່ภาวะໃນໂຕເຈນຕ່າງໆ

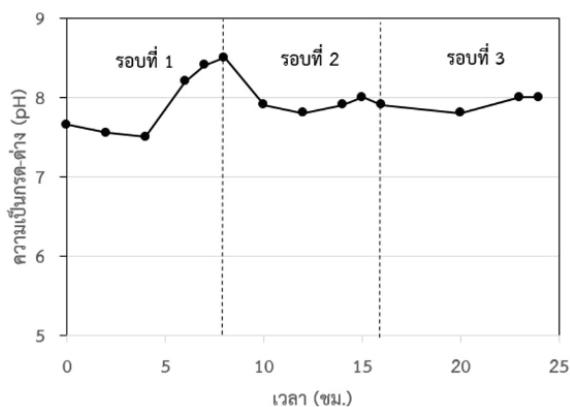
3.2. ກລົກການກຳຈັດໃນໂຕເຈນ


ໃນການສຶກໜາກລົກການກຳຈັດໃນໂຕເຈນທີ່ເກີດຂຶ້ນກາຍໃນຮະບົບເອສບີອັບຕົວຢ່າງນໍ້າຖຸກເກີບເປັນຮະຍ່າ ໃນຮວ່າງ 3 ຮອບຂອງການບຳບັດ ແລະ ວິເຄຣະທີ່ການປັບປຸງແປງຂອງໃນໂຕເຈນ ຈາກຮູບທີ 3 ຈະເຫັນໄວ້ໃນຮອບແຮກຂອງການບຳບັດ ປົມາລັນ $\text{NH}_4\text{-N}$ ລດລັງຍ່າງຮັດເຮົາຈາກ 48 ມີລັດລິຕິຣຕ່ອລິຕິຣ ແລ້ວ 32 ມີລັດລິຕິຣຕ່ອລິຕິຣ ເມື່ອສັ້ນສຸດການເຕີມອາກາສ (ໜີ່ວັນທີ 4) ຂະນະທີ່ປົມາລັນ $\text{NO}_2\text{-N}$ ເພີ່ມຂຶ້ນເປັນ 22 ມີລັດລິຕິຣຕ່ອລິຕິຣ ແລະ $\text{NO}_3\text{-N}$ ອູ້ທີ່ 1 ມີລັດລິຕິຣຕ່ອລິຕິຣປາກກູກກາຮັນນີ້ແສດງລົງການເກີດຮະບົບການໃນຕົວເຈນບ່າງສ່ວນ (Partial nitrification) ໃນຮະບົບ ກລ່າວຄື່ອງ $\text{NH}_4\text{-N}$ ໃນນໍ້າເສີຍຖຸກອອກຈີ່ໄດ້ເປັນ $\text{NO}_2\text{-N}$ ແລະ ນໍ້າຖຸກອອກຈີ່ໄດ້

ຕ່ອງຈັດ $\text{NO}_3\text{-N}$ ຊຶ່ງຮະບົບການນີ້ສາມາຮັດຕັດຂຶ້ນໄດ້ໃນສັກວະທີ່ມີອົກຈີ່ເຈນຈຳກັດ ເຊັ່ນ DO 0.5 ມີລັດລິຕິຣຕ່ອລິຕິຣ [14] ອ່າງໄຮັກຕາມ ດ້ວຍ DO ຂອງຮະບົບມີຄ່າສູງຖືກ 5.5 ມີລັດລິຕິຣຕ່ອລິຕິຣ (ຮູບທີ່ 4) ດັ່ງນັ້ນ ຮະບົບການໃນຕົວເຈນບ່າງສ່ວນທີ່ເກີດຂຶ້ນນີ້ມີສາເຫຼຸມາຈາກສັດຈິທີ່ໃໝ່ມີກຸລຸນຈຸລິນທີ່ທີ່ທໍານາທີ່ສລາຍ $\text{NO}_2\text{-N}$ ໄທເປັນ $\text{NO}_3\text{-N}$ ອູ້ໄໝມີກຸນັກ


ເມື່ອສັ້ນສຸດການຫຼຸດເຕີມອາກາສໃນຮອບແຮກ (ໜີ່ວັນທີ 7) ຈະເຫັນໄວ້ໄໝພວ $\text{NO}_2\text{-N}$ ແລ້ວ $\text{NO}_3\text{-N}$ ແລ້ວອູ້ໃນຮະບົບ ແສດງຄື່ການເກີດຮະບົບການໃນຕົວເຈນບ່າງສ່ວນທີ່ໄດ້ຈັກຮະບົບໃນຕົວເຈນທີ່ໄດ້ຂຶ້ນ ໂດຍຢ່າຍສັ້ຍອົກຈີ່ເຈນທີ່ເກີດຂຶ້ນ ໂດຍເຫັນວິສັດຈິທີ່ສັກວະທີ່ກີ່ວິ່ງກັບການ

ເມື່ອເຕີມອາກາສອີກຈັກໃນຮອບທີ່ 2 (ໜີ່ວັນທີ 8-11) ປົມາລັນ $\text{NH}_4\text{-N}$ ຍັງຄົງລົດລັງຍ່າງຕ່ອນເນື່ອງ ໃນຂະນະທີ່ປົມາລັນ $\text{NO}_2\text{-N}$ ດັ່ງໃນຮູບທີ່ 11-15 ແສດງໃຫ້ເຫັນວ່າ ຮະບົບການໃນຕົວເຈນທີ່ຍັງຄົງເກີດຂຶ້ນອູ້ ແຕ່ຮະບົບການໃນຕົວເຈນທີ່ໃນຕົວເຈນຫຼຸດລົງ ຈາກການຕຽບຕັ້ງປົມາລັນອົງທຶນທີ່ກົດຕັ້ງປົມາລັນໃນນໍ້າ ພບວ່າສາເຫຼຸມສຳຄັນຂອງການຫຼຸດຮະບົບການໃນຕົວເຈນທີ່ໃນຮອບທີ່ 2 ກົດຕັ້ງປົມາລັນທີ່ໄດ້ເພີ່ມພວ ເຊັ່ນເຕີມກັບການບຳບັດໃນຮອບທີ່ 3


ຈາກຮູບທີ່ 5 ການລົດລັງຂອງຄ່າຄວາມເປັນກຽດ-ດ່າງໃນຮູບທີ່ 5 ການເຕີມອາກາສ ແລະ ການເພີ່ມຂຶ້ນຂອງຄ່າຄວາມເປັນກຽດ-ດ່າງໃນຮູບທີ່ 6 ການຫຼຸດເຕີມອາກາສ ສັນບສຸນການເກີດຮະບົບການໃນຕົວເຈນທີ່ ແລະ ອົງທຶນທີ່ກົດຕັ້ງປົມາລັນ ດັ່ງສົມການທີ່ 1-3

ຮູບທີ່ 3 ການເປີ່ມປັງແປງຂອງໃນໂຕເຈນຮວ່າງດໍາເນີນຮະບົບ

รูปที่ 4 การเปลี่ยนแปลงของค่าอوكซิเจนละลายน้ำ (DO) ระหว่างดำเนินระบบ

รูปที่ 5 การเปลี่ยนแปลงของค่าความเป็นกรด-ด่าง (pH) ระหว่างดำเนินระบบ

4. สรุปผลการทดลอง

ระบบເລສບປັກທີ່ອຸກແບບໃນງານວິຊຍືນີ້ ອັນປະກອບດ້ວຍ
ການທ່ານທັງໝົດ 3 ຮອບ ໂດຍໃນແຕ່ລະຮອບປະກອບດ້ວຍການ
ເຕີມອາກາສ 3 ຂໍ້ວົມງ ກາຮຢຸດເຕີມອາກາສ 4 ຂໍ້ວົມງແລກການ
ທັກທະກອນ 1 ຂໍ້ວົມງ ສາມາດກຳບັດນ້ຳເສີຍໃນໂຕຣເຈນໄດ້ອ່າຍ່າມີ
ປະສິທິພາກ ໂດຍໃຫ້ປະສິທິພາກກາຮກຳບັດສູງສຸດ 82% ທີ່
ກະຮະໃນໂຕຣເຈນ 0.100 ກກ.ໃນໂຕຣເຈນຕ່ອງ ລບ.ມ.-ວັນ ສໍາຮັບ
ກລິກາກກາຮກຳຈັດໃນໂຕຣເຈນທີ່ສຳຄັນ ອື່ງ ກະບວນກາຮໃນຕຣິຟິເຄັ້ນ
ທີ່ເກີດຂຶ້ນໄດ້ຕີໃນໜ່ວງກາຮເຕີມອາກາສ ແລກະບວນກາຮຕີໃນຕຣິ
ຟິເຄັ້ນທີ່ເກີດໄດ້ຕີໃນໜ່ວງກາຮຢຸດເຕີມອາກາສ ອ່າງໄຣກ໌ຕາມ
ສາຮອນທີ່ກົດຂຶ້ນໄດ້ໄໝ່ສົມບູຮົນໝາຍຈາກການສຶກສາປະສິທິພາກ
ໃນໂຕຣເຈນກົດຂຶ້ນໄດ້ໄໝ່ສົມບູຮົນໝາຍຈາກການສຶກສາປະສິທິພາກ
ຂອງຮະບບພື້ມເຕີມ ເມື່ອໃຫ້ນ້ຳເສີຍປັນເປື້ອນໃນໂຕຣເຈນຈົງຈີງຕ່ອງໄປ

5. กิตติกรรมประกาศ

ทางคณะผู้วิจัยขอขอบพระคุณ Kurita Water and Environment Foundation ที่ให้ทุนสนับสนุนงานวิจัยนี้

6. เอกสารอ้างอิง

- [1] Wu, S., Austin, D., Liu, L., & Dong, R. (2011). Performance of integrated household constructed wetland for domestic wastewater treatment in rural areas. *Ecological Engineering*, 37(6), 948-954.
- [2] Amini, M., Younesi, H., Lorestani, A. A. Z., & Najafpour, G. (2013). Determination of optimum conditions for dairy wastewater treatment in UAASB reactor for removal of nutrients. *Bioresource technology*, 145, 71-79.
- [3] Miao, L., Wang, S., Cao, T., & Peng, Y. (2015). Optimization of three-stage Anammox system removing nitrogen from landfill leachate. *Bioresource technology*, 185, 450-455.
- [4] Wang, M., & Park, C. (2015). Investigation of anaerobic digestion of Chlorella sp. and Micractinium sp. grown in high-nitrogen wastewater and their co-digestion with waste activated sludge. *Biomass and Bioenergy*, 80, 30-37.
- [5] Lateef, S. K., Soh, B. Z., & Kimura, K. (2013). Direct membrane filtration of municipal wastewater with chemically enhanced backwash for recovery of organic matter. *Bioresource technology*, 150, 149-155.
- [6] Markou, G., Vandamme, D., & Muylaert, K. (2014). Using natural zeolite for ammonia sorption from wastewater and as nitrogen releaser for the cultivation of *Arthospira platensis*. *Bioresource technology*, 155, 373-378.
- [7] Walters, E., Hille, A., He, M., Ochmann, C., & Horn, H. (2009). Simultaneous nitrification/denitrification in a biofilm airlift suspension (BAS) reactor with biodegradable carrier material. *Water Research*, 43(18), 4461-4468.
- [8] Mobarry, B. K., Wagner, M., Urbain, V., Rittmann, B. E., & Stahl, D. A. (1996). Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. *Applied and environmental microbiology*, 62(6), 2156-2162.
- [9] Robertson, L. A., Van Niel, E. W., Torremans, R. A., & Kuenen, J. G. (1988). Simultaneous nitrification and denitrification in aerobic chemostat cultures of *Thiospaera pantotropha*. *Applied and environmental microbiology*, 54(11), 2812-2818.
- [10] Guo, J., Zhang, L., Chen, W., Ma, F., Liu, H., & Tian, Y. (2013). The regulation and control strategies of a sequencing batch reactor for simultaneous nitrification and denitrification at different temperatures. *Bioresource technology*, 133, 59-67.
- [11] Khanitchaidecha, W., Nakaruk, A., Koshy, P., & Futaba, K. (2015). Comparison of Simultaneous Nitrification and Denitrification for Three Different Reactors. *BioMed Research International*, 2015, 1-7 7p. doi:10.1155/2015/901508

[12] *Standard methods : for the examination of water and wastewater.* (1998). (20nd ed. ed.). Washington, DC :: American Public Health Association.

[13] LE, S.T.T., W. Khanitchaidecha, A. Nakaruk. (2015). Effect of aeration rates on simultaneous nitrification and denitrification in intermittent aerated bioreactor.

Asian Journal of Microbiology, Biotechnology and Environmental, 17 (757-761).

[14] Ruiz, G., Jeison, D., & Chamy, R. (2003). Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. *Water Research*, 37(6), 1371-1377.