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Abstract 
Accurate chicken counting is essential for operational efficiency and compliance in poultry processing. Manual 

counting methods are prone to error and unsuitable for high-speed production.  This study presents the validation of 
automated chicken counting in an industrial slaughterhouse using YOLOv8 detection with SORT tracking and ROI-
based strategies. While the core pipeline follows established computer vision methods, the novelty lies in systematically 
benchmarking three ROI strategies under high-speed conveyor conditions where occlusion, motion blur, and unstable 
lighting are major challenges. Tested on real production line footage, the system was evaluated using precision, recall, 
and F1-score against ground truth counts. Video-based strategies centred on the conveyor line achieved the highest 
accuracy, with F1-scores up to 0.998 and a Mean Absolute Error (MAE) of 2.30, a Mean Absolute Percentage Error 
(MAPE) of 0.74%, and a Root Mean Square Error (RMSE) of 2.70, while image-based approaches undercounted by up 
to 13%. Confidence variability was markedly lower in video-based methods (CV < 9%), demonstrating robustness under 
dynamic production conditions. Beyond methodological integration, this work introduces LLM-driven code generation 
for rapid development of industrial vision systems. The findings provide practical guidance for camera positioning, 
threshold settings, and deployment in high-speed slaughterhouse environments, establishing a foundation for scalable, 
high-accuracy poultry processing automation. 
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1. INTRODUCTION 

Thailand is currently positioned among the top five 
global exporters of chicken meat. In 2023, the nation’s 
chicken exports were valued at approximately USD 1.54 
billion (The Observatory of Economic Complexity, 
2025), with more than 57% comprising cooked or 
processed products (Public Relations Department of 
Thailand, 2024). This upward trend is projected to 
continue at an annual growth rate of 3.5–4.5%, driven by 
increasing global demand for affordable protein sources, 
expanded access to halal markets in the Middle East, and 
rising demand from neighboring countries. Additionally, 
the avian influenza outbreak in Brazil in 2025 presents 
Thailand with a strategic opportunity to further expand 
its export market, with projected revenues reaching USD 
1.7 billion (Reuters, 2025). 

Concurrently, the poultry industry is undergoing a 
technological transformation through the adoption of 
Precision Livestock Farming (PLF) technologies. These 
systems utilize artificial intelligence (AI), the Internet of 
Things (IoT), and computer vision to enhance 
productivity and animal welfare monitoring (Jiang et al., 
2023). PLF facilitates improved decision-making in 

areas such as animal health, feed efficiency, and 
traceability (Novus International, Inc., 2025). Within this 
framework, automated chicken counting has emerged as 
a critical component in slaughterhouse operations, 
contributing to consistency, traceability, and compliance 
with international export standards. 

Despite its operational importance, traditional 
chicken counting methods such as manual tallying and 
contact-based sensors exhibit several limitations: human 
error (Wu et al., 2025) due to fatigue and subjective 
judgment, occlusion (Khanal et al., 2024; Wu et al., 
2025) from overlapping carcasses, environmental 
instability (Feng et al., 2025) affecting detection 
accuracy, visual complexity (Khanal et al., 2024) from 
background elements, and scalability (Wu et al., 2025) 
issues in high-speed processing environments. 

Recent advancements in deep learning-based object 
detection have demonstrated significant potential in 
addressing these challenges. Okinda et al. (2020) 
emphasized the potential of deep learning systems across 
multiple poultry welfare tasks. Among detection-based 
approaches, the YOLO (You Only Look Once) 
architecture has demonstrated robust real-time 
performance (Siriani et al., 2023; Qin et al., 2025). 
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Specific adaptations for poultry have yielded high 
results; for instance, Zhu et al. (2022) achieved 95.87% 
accuracy in dense flocks, while Guo et al. (2023) 
improved YOLOv5 using attention mechanisms 
(CBAM) to reach 97.3% precision. More recently, Wu et 
al. (2025) proposed YOLO-CCA to enhance F1-scores, 
and comparative studies by Bumbálek et al. (2025) 
suggest that while YOLOv9c achieves the highest 
precision, YOLOv11n offers the fastest inference speed. 

However, detection alone is insufficient for 
continuous counting. Tracking algorithms such as SORT 
(Bewley et al., 2016; Wojke et al., 2017) and DeepSORT 
are instrumental in maintaining object identity. Yang et 
al. (2024) demonstrated that combining YOLOv8 with 
DeepSORT achieved 94% MOTA in cage-free hen 
monitoring. To further enhance robustness against 
environmental noise, motion filtering techniques like 
MOG2 have been validated by Garcia-Garcia et al. 
(2020) and Iseki et al. (2025), while Stopassola et al. 
(2021) highlighted that pairing these with optimized 
thresholds improves precision. Alternatively, for extreme 
crowding, density-based models like DFCCNet (Lv et 
al., 2023) and CSRNet (Li et al., 2018) offer effective 
counting via density maps rather than bounding boxes. 
Table 1 summarizes these core AI components using 
real-world analogies. 

 
Table 1 Analogy-based summary of core AI components 
 

Component Real-World Analogy Method used  

Object Detection Face scanner or 
barcode reader 

YOLOv8 

Object Tracking Bib number tracking in 
a race 

YOLO + SORT 

Motion Filtering Audio noise 
cancellation 

MOG2 

Density Map Estimating a crowd via 
drone 

DFCCNet, CSRNet 

Prompt 
Engineering 

Giving instructions to 
a smart assistant 

ChatGPT + LLMs 

 
Beyond the vision pipeline, Prompt Engineering is 

emerging as a transformative method for system 
development. It involves structured input design to guide 
Large Language Models (LLMs) in executing complex 
tasks (Chen et al., 2023). Recent work by Xue et al. 
(2025) showed that LLMs can iteratively optimize 
system architectures to achieve near-human accuracy. 
Furthermore, Sahoo et al. (2024) emphasized its strategic 
value in both vision and language tasks. In this study, 
LLMs were leveraged to generate initial YOLO pipeline 
templates, suggest error-handling routines, and assist in 
debugging integration, effectively democratizing access 
to advanced AI solutions. 

This study aims to develop a robust, real-time chicken 
counting system for slaughterhouses by benchmarking 
three ROI-based strategies (Central Box, Midline 
Crossing, and Left-edge Exit) against industrial 

challenges. Built on the YOLOv8 architecture and 
validated under real production conditions, the system 
addresses the gap in systematic benchmarking for high-
speed conveyor lines. Performance is assessed using 
precision, recall, F1-score, and regression metrics (MAE, 
MAPE, RMSE) to identify the optimal configuration for 
scalable poultry operations. 
 

2. EXPERIMENTAL SETUP AND METHODOLOGY 

This study employed a comprehensive pipeline for 
real-time object detection and counting of poultry in an 
industrial processing environment. The dataset 
comprised 5-minute video clips recorded at a resolution 
of 1280 × 720 pixels and 30 frames per second, yielding 
approximately 9,000 frames per clip. On average, each 
video contained approximately 645 chickens , with an 
average density of 11 chickens visible per frame 
depending on the conveyor speed. 
 
 
 
 
 
 
 

Figure 1 Setup USB webcam to chicken conveyor 

Show the experimental data collection was performed 
using a USB webcam installed in the post-plucking area. 
The camera was mounted at a height of approximately 
120 cm, maintaining a working distance of 
approximately 50 cm from the suspended chicken 
carcasses to ensure an optimal field of view (Figure 1). 
The frontal view was chosen to minimize obscuration 
between adjacent chicken carcasses, with lighting 
conditions typical of the processing process. All video 
processing and inference tasks were executed on a 
Windows 11 Pro system equipped with an Intel Core i5- 
12400 CPU (2.50 GHz), 8 GB RAM, and no dedicated 
GPU. The software stack included Python v3.10.11, 
OpenCV v4.8.1, and PyTorch v2.7.1 (CPU-only 
version). Object detection was performed using 
YOLOv8 (Ultralytics). Video input was captured live 
from a USB webcam (720p @ 30 FPS), and CUDA 
acceleration was not available.  

The training, validation, and testing of YOLOv8 were 
conducted on a manually annotated dataset of 200 frames 
extracted from video recordings of chickens suspended 
on the processing line. These annotated images were 
collected across separate recording days to reduce 
temporal bias and ensure variation in carcass presentation 
and environmental conditions. The trained YOLOv8 
model was then applied to an independent five-minute 
video clip, recorded on a different day, which was not 
part of the annotated dataset. This five-minute clip was 

50 cm 

Chicken 
conveyor 

Webcam 



NUEJ 
Naresuan University  
Engineering Journal 
 

 
 
Naresuan University Engineering Journal, Vol. 20, No. 2, July-December 2025, pp. 20-30 22 

used solely for benchmarking real-time counting 
performance and was not included in the training process. 

YOLOv8 was selected for object detection, trained on 
a custom-labeled dataset of chickens with bounding 
boxes. A confidence threshold of 0.3 was applied, and 
Non-Maximum Suppression (NMS) was used to 
eliminate duplicate detections. Prior studies have shown 
that YOLOv8 can achieve over 95% detection accuracy 
in real-world environments (Zhu et al., 2022; Farjon et 
al., 2023). 

To mitigate false positives arising from static 
background elements such as crate rails and conveyor 
edges, background subtraction was implemented using 
the Mixture of Gaussians version 2 (MOG2) algorithm 
from OpenCV. The algorithm was configured with a 
history of 100 frames and a variance threshold of 40, 
following the methodology proposed by Zivkovic and 
van der Heijden (2006). For multi-object tracking, the 
Simple Online and Realtime Tracking (SORT) algorithm 
was employed to maintain consistent object identities 
across frames. Key parameters included max_age = 30, 
min_hits = 3, and an Intersection-over-Union (IoU) 
threshold of 0.3. SORT has been validated for robust 
tracking in dynamic industrial environments (Bewley et 
al., 2016; Wojke et al., 2017).  

To handle motion blur and temporary occlusions 
common in high-speed conveyors, the system relies on a 
multi-stage filtering mechanism rather than aggressive 
image pre-processing, which could induce latency. First, 
a confidence threshold of 0.3 was selected to prioritize 
Recall at the detection stage, ensuring no chicken is 
missed due to blur or lighting conditions. While this low 
threshold increases sensitivity, the risk of false positives 
is mitigated by the subsequent stages. The SORT 
algorithm acts as a temporal filter, validating detections 
based on trajectory consistency; transient noise or 
flickering detections that fail to establish a stable track 
over consecutive frames are discarded. Subsequently, the 
ROI counting logic serves as a spatial filter, ensuring that 
only objects exhibiting linear motion through the defined 
counting zone are registered. This synergy allows the 
system to maintain high sensitivity without 
compromising counting precision. 

Three Region of Interest (ROI)-based strategies were 
developed for counting chickens: (1) the Central Box 
method, which counted chickens whose bounding box 
centers remained within a central region for at least two 
consecutive frames; (2) the Midline Crossing method, 
which triggered a count when an object’s center crossed 
the vertical midline, with time-based suppression to 
prevent duplicate counts; and (3) the Left-edge Exit 
method, which counted objects exiting the left frame 
boundary, using track IDs to avoid repeated counts. 

Detection results were logged in CSV format, with 
each entry containing the timestamp, object track ID, 
class ID, confidence score, and bounding box coordinates 

(x1, y1, x2, y2). This structured output facilitated 
subsequent auditing and quantitative analysis 
(Krizhevsky et al., 2012). 

System performance was evaluated using three 
standard metrics, i.e., Precision, Recall, and F1-score, 
defined respectively as:  

 
Precision = 	 !"

!"#$"
× 100%  (1) 

 
				Recall = 	 !"

!"#$%
× 100%   (2) 

 
				F1 − score	 = 2 ×	"&'()*)+,	×	/'(011	

"&'()*)+,	#	/'(011
× 100% (3) 

 
Where: 

• TP: True Positives — Correctly detected chickens 
• FP: False Positives — Incorrectly detected objects as 

chickens 
• FN: False Negatives — Missed detections of actual 

chickens 
These metrics are widely adopted in poultry detection 

research (Guo et al., 2023; Pangestu, 2025), with 
enhancements such as YOLOv5-CBAM shown to 
improve F1-score (Cheng et al., 2024). 

In addition to classification metrics, the system's 
counting accuracy was rigorously evaluated using 
regression metrics to quantify performance over time. 
Specifically, Mean Absolute Error (MAE), Mean 
Absolute Percentage Error (MAPE), and Root Mean 
Square Error (RMSE) were calculated based on 
cumulative counts over 30-second intervals. 

Prompt engineering techniques were employed to 
assist in the development of the detection and tracking 
pipeline using GPT-4. Structured prompts incorporating 
role definitions, code constraints, and iterative feedback 
mechanisms were used to generate and refine Python 
scripts for each subsystem (Brown et al., 2020). 

Statistical analysis of counting strategies was 
conducted using Python libraries statsmodels and scipy. 
Data normality was assessed via the Shapiro–Wilk test. 
Depending on the outcome, either one-way ANOVA (for 
normally distributed data) or the Kruskal–Wallis H-test 
(for non-normal data) was applied. Post hoc pairwise 
comparisons were performed using Tukey’s HSD 
following ANOVA or the Mann–Whitney U test with 
Bonferroni correction following Kruskal–Wallis. 
Visualization tools included boxplots and kernel density 
plots of confidence scores, heatmaps of pairwise-
adjusted p-values, and dendrograms for hierarchical 
clustering of counting strategies. 
 
 
 
 
 



NUEJ 
Naresuan University  
Engineering Journal 
 

 
 
Naresuan University Engineering Journal, Vol. 20, No. 2, July-December 2025, pp. 20-30 23 

3. RESULTS AND DISCUSSION 

The researcher applied the concept of Prompt 
Engineering with LLMs to build a real-time system 
composed of object detection, object tracking, counting, 
and result logging. The LLM helped modularize the code 
structure and automatically generated pseudocode or a 
skeleton pipeline from a single command. For example, 
changing the counting strategy from “middle-frame 
counting” to “left-edge counting” could be done by 
simply adjusting the prompt without altering low-level 
code or retraining the model. This made iterative system 
testing and development in a human in the loop format 
rapid and continuous. This concept aligns with recent 
studies in LLM-aided design, which show that LLMs can 
support all phases of system development including 
conceptualization, prototyping, verification, and 
optimization without requiring machine learning 
expertise (Gu et al., 2023; Sahoo et al., 2024). Research 
by Cruz et al. (2024) and Siriani et al. (2023) also 
confirms that LLMs can accelerate development, reduce 
errors, and streamline deployment in vision and object 
tracking systems. 

The automated chicken counting system was 
evaluated not only for accuracy but also for 
computational efficiency, a critical factor for "Real-
Time" applications. Running on the specified hardware, 
the system achieved an average inference time of 56.92 
milliseconds per frame, translating to approximately 
17.57 Frames Per Second (FPS). This performance 
confirms the system's capability to operate in real-time 
alongside the conveyor speed. 

Object Detection Performance and Regression 
Metrics To evaluate each strategy, the system’s 
performance was statistically compared using Precision, 
Recall, F1-score, and Regression Metrics (MAE, MAPE, 
RMSE) based on a ground truth count of 645 chickens. 
 
3.1 System and Input Data 

The system operates as a sequential pipeline where 
YOLOv8 serves as the primary detection engine (Figure 
2), extracting spatial coordinates of poultry from the 
actual processing line footage. These coordinates are 
then fed into three distinct ROI-based counting modules 
(Box Area, Middle Line, and Left Edge), which act as 
decision triggers to convert raw detections into 
cumulative counts based on specific spatial rules. 

Each processed frame generated structured output 
consisting of timestamp, Object ID, Class ID, confidence 
score, and bounding box coordinates (x1, y1, x2, y2), as 
shown in Table 2.  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

Figure 2 (a) State of-the-art and (b) chicken counting system 
developed using YOLOv8 

 
Table 2 Sample structured output per frame 

 

Timestamp Object ID Class ID Confidence x1, y1 
(top-left) 

x2, y2 
(bottom-

right) 
12:00:01 01 Chicken 0.83 112, 305 202, 410 
12:00:01 02 Chicken 0.76 215, 300 305, 395 

 
3.2 Object Detection Performance  

To evaluate each strategy, the system’s performance 
was statistically compared using Precision, Recall, and 
F1-score, based on a ground truth count of 645 chickens, 
as shown in Table 3. 

 
Table 3 Accuracy Comparison of Six Strategies 
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Left edge-
webcam 

560 645 560 0 85 1.00
0 

0.868 0.929 

Middle line-
webcam 

579 645 579 0 66 1.00
0 

0.898 0.946 

Box area- 
webcam 

696 645 645 51 0 0.92
7 

1.000 0.962 

Left edge- 
VDO 

602 645 602 0 43 1.00
0 

0.933 0.966 

Middle line- 
VDO 

643 645 643 0 2 1.00
0 

0.997 0.998 

Box area- 
VDO 

649 645 645 4 0 0.99
4 

1.000 0.997 

 
Regression Analysis of Counting Accuracy to provide a 
more rigorous evaluation than simple total count 
comparison, regression metrics were calculated based on 
30-second cumulative intervals. Table 4 presents the 
Mean Absolute Error (MAE), Root Mean Square Error 
(RMSE), and Mean Absolute Percentage Error (MAPE) 
for all six strategies. 
 
 
 
 

Manual & Sensor-
based Counting 
Human tallying prone 
to error  
Beam sensor risk 
duplication/misses 

AI in Farms/Lab 
(State-of-the-Art) 
YOLOv5 on barn floor 
CSRNet for crowd 
counting  
Validated in controlled 
settings  

This study: 
YOLOv8 + Video 
Tracking 
First application in 
real slaughterhouse   
Robust under 
occlusion & motion 

(a) 

Processing 

YOLOv8 
Detection 

SORT 
Tracking 

ROI Logic 

Output 

Video 
Input 

Input 

(b) 

Frame 
Extraction 

Count 
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TABLE 4. Regression Metrics Comparison (MAE, RMSE, 
MAPE) 

Strategy MAE 
(Count) 

RMSE 
(Count) 

MAPE 
(%) 

Line (Video) 2.30 2.70 0.74 
Box (Video) 8.00 9.09 2.48 
Edge (Video) 25.60 28.05 7.71 
Box (Image) 23.10 27.76 5.85 
Line (Image) 37.30 41.04 11.43 
Edge (Image) 49.40 55.21 14.14 

 
The results unequivocally demonstrate the superiority 

of video-based processing over static image-based 
methods. The Line (Video) strategy achieved the best 
overall performance with an exceptionally low MAPE of 
0.74% and an MAE of 2.30, indicating that, on average, 
the system deviates by only approximately 2 chickens per 
30-second interval. 

In contrast, image-based strategies showed high 
volatility. The Edge (Image) strategy performed the 
poorest, with an MAE of 49.40 and MAPE of 14.14%. 
Even the best image-based method (Box-Image) had an 
error rate (MAE 23.10) nearly ten times higher than the 
best video method. This substantial difference highlights 
the critical role of temporal information in tracking 
algorithms (SORT) to resolve occlusions and maintain 
object identities on high-speed conveyors. 

In the detection display, red boxes represent counted 
chickens, while green boxes are uncounted (Figure 3). 
Three ROI-based counting strategies are applied to 
slaughterhouse conveyor footage. Insets highlight typical 
error sources are (a) Central Box, where partial occlusion 
leads to missed counts; (b) Midline Crossing, where 
motion blur during conveyor movement causes 
inconsistent detection; and (c) Left-edge Exit, where 
overlapping carcasses at the belt margin increase 
undercounting. 

   
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

Figure 3 Comparison of three ROI-based counting strategies 
applied to slaughterhouse conveyor footage 

 

Figures 3. Examples of counting errors observed 
during slaughterhouse testing, where (a) occlusion within 
the central ROI caused repeated detections and 
cumulative overcount, (b) rapid movement and partial 
occlusion led to missed midline-crossing events and 
undercount, and (c) object loss near the image boundary 
resulted in undercount due to incomplete trajectory 
tracking. 

Figures 4 through 5 provide a comprehensive visual 
analysis of system performance across all six counting 
strategies. Figure 5 presents a bar chart comparing 
Precision, Recall, and F1-score, where video-based 
strategies consistently outperform still-image 
approaches, particularly in terms of Recall and F1-score. 
Figure 4 complements this with a line chart that captures 
the trends and variability of each metric across strategies, 
enabling clearer interpretation of the trade-offs between 
detection completeness and precision. Figure 6 further 
illustrates the absolute number of chickens detected by 
each method relative to the ground truth (645 chickens), 
using a horizontal reference line to highlight 
undercounting and overcounting behaviors. 

 

 
 

Figure 4 Comparison of Precision, Recall, and F1 Score 
across all six strategies 

 
 
Figure 5 Line chart showing variation in metrics across 

strategies 
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Figure 6 Detected chicken counts per method vs ground truth  

 
Error Analysis and Robustness To address the 

robustness of the model, specific scenarios such as empty 
shackles (missing chickens) and foreign objects were 
analyzed. The model successfully distinguished between 
chickens and empty shackles, resulting in zero false 
positives from empty hooks. However, some errors 
persisted. 

 
Figure 7 Examples of False Negatives 

 
As shown in Figure 7, False Negatives (FN) primarily 

occurred due to extreme occlusion where two chickens 
overlapped significantly, the chickens are not hung 
properly, or motion blur caused by conveyor vibration. 
False Positives (FP) were rare but sometimes by double 
counting of the box area. 

The integrated analysis of these visualizations and the 
corresponding quantitative data reveals that the Middle 
Line- VDO strategy delivered the highest overall 
performance across all metrics, followed closely by Box 
Area-VDO. In contrast, strategies based on still images 
exhibited the most deviation from the ground truth, 
particularly in Recall, which reflects missed detections 
(false negatives). These findings suggest that static image 
input is less suitable for accurately detecting fast-moving 
poultry on conveyor lines, where continuous motion and 
temporal context significantly enhance detection and 
tracking stability. 

From the combined analysis of these figures and the 
supporting data tables, the Middle Line-VDO strategy 
yielded the best performance across all metrics, closely 
followed by the Box Area-VDO strategy. Conversely, 
still-image-based strategies showed the greatest deviation 
from the actual count, particularly in Recall, which 

reflects the rate of missed detections (false negatives). 
This suggests that static image input is less suited for fast-
moving objects such as chickens on a production line, 
where motion continuity aids detection and tracking 
consistency. 

 
3.3 Detection Confidence and Variability 

Confidence scores were analyzed using mean, 
standard deviation (SD), and coefficient of variation 
(CV%) to assess system stability. Table 4 shows that 
video-based strategies (Middle Line-VDO and Box Area-
VDO) yielded high mean confidence (0.727, 0.718) and 
low CV (<9%), indicating consistent detection. 

In contrast, still image strategies (e.g., Box Area-
Webcam and Left Edge-Webcam) had lower mean 
confidence (0.57–0.59) and higher variability (CV ∼17–
18%), suggesting less reliable performance. 
 
Table 5 Confidence Statistics and CV% per Strategy 

 

Strategy 
 

Detection 
(Count) 

Mean 
Confidence 

(Score) 

Std. Dev. 
(Score) 

Coefficient of 
Variation 

(%) 
Left edge-webcam  560 0.590 0.109 18.46 
Middle line-webcam    579 0.590 0.098  16.66 
Box area-webcam 696 0.571 0.100 17.44 
Left edge- VDO 602 0.574 0.097 16.95 
Middle line- VDO 643 0.727 0.062 8.53 
Box area-VDO 649 0.718 0.062 8.62 

 
The results from Table 5 highlight the advantages of 

using video input for object detection on continuously 
moving production lines. Video-based strategies not 
only reduce occlusion-related errors, but also provide 
higher and more consistent confidence scores, 
contributing to a more stable system when deployed in 
real-world industrial environments. 

The distribution of confidence scores for each 
strategy was further analysed using boxplots and density 
plots, as shown in Figures 8 and 9, respectively. 

 

Figure 8 Boxplot showing interquartile range (IQR) and 
outliers in confidence scores 



NUEJ 
Naresuan University  
Engineering Journal 
 

 
 
Naresuan University Engineering Journal, Vol. 20, No. 2, July-December 2025, pp. 20-30 26 

 
Figure 9 Density plot indicating distribution shape and 

skewness in confidence scores 
 

The boxplot clearly illustrates the interquartile range 
(IQR) and identifies outliers in each strategy, providing a 
concise visualisation of confidence score variability. The 
density plot reveals the distribution shape, including 
skewness and the concentration of scores within high or 
low intervals. 

From both figures, it is evident that video-based 
strategies, such as Line (Video) and Box (Video), exhibit 
narrower and steeper distributions. This reflects higher 
consistency in detection, which aligns with their low 
coefficient of variation (CV%) reported in Table 4. These 
results reaffirm that video input not only enhances 
accuracy but also improves the system’s robustness and 
reliability under dynamic production conditions. 
 
3.4 Statistical Significance Testing  

The Kruskal–Wallis H-test revealed statistically 
significant differences in confidence scores among the six 
strategies (H = 1576.54, p < 0.001). 

Pairwise comparisons using the Mann–Whitney U 
Test with Bonferroni-adjusted p-values showed that 
Edge (Video) differed significantly from almost all others, 
while no significant difference was found between Edge-
Webcam and Line-Webcam, see Table 6. 

A primary section heading is enumerated by a capital 
letter and is centered above the paragraph text. 

A secondary section (subsection) heading is 
enumerated by a capital letter followed by a period and is 
flush on the left of the column. All letters of each 
important word is capitalized. The text style is italic. 

 
Table 6 Mann–Whitney U Test Results with Bonferroni  
 Adjustment 

 
Strategy 1 Strategy 2 Strategy 3 

Edge (Webcam) Edge (Video) < 0.001 
Line (Webcam) Edge (Video) < 0.001 
Box (Video) Line (Video) < 0.001 
Box (Webcam) Edge (Video) < 0.001 
Line (Webcam) Edge (Webcam) 0.992 

 

3.5 Structural Analysis of Strategy Differences:      
      Heatmap and Dendrogram 

To understand the overall structure of differences 
between detection strategies, a heatmap was generated 
using Bonferroni-adjusted p-values from all pairwise 
comparisons, as shown in Figure 10. 

• Dark tones in the heatmap indicate pairs with 
statistically significant differences (p < 0.05). 

• Light tones represent pairs with no statistically 
significant difference. 

 
 

Figure 10 Heatmap of Bonferroni-adjusted p-values between 
strategies 

The heatmap reveals that video-based strategies are 
clearly distinct from still-image-based strategies, with 
Line (Video) in particular showing significant 
differences from nearly all others. 

To further illustrate statistical similarity between 
strategies, hierarchical clustering was performed using the 
dissimilarity metric (1 − padjusted). The results are 
visualized in Figure 11. 

 
 

Figure 11 Dendrogram showing grouping of strategies based 
on statistical similarity 
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The dendrogram shows that Line (Video) and Box 
(Video) cluster closely together, reflecting similar 
detection behavior and high accuracy. In contrast, Edge 
(Webcam) is positioned far from the others, indicating a 
distinct and less effective detection pattern. This 
separation highlights its practical limitations, especially in 
complex or high-speed environments. 

Overall, this structural analysis confirms that video-
based strategies not only outperform in detection metrics 
but also exhibit consistent statistical characteristics, 
making them more reliable and suitable for industrial 
deployment compared to image-based approaches. 
 
3.6 Accuracy Assessment vs Ground Truth   

A direct comparison with human-labeled ground truth 
(645 chickens) quantified both absolute and relative 
errors for each strategy. Table 7 summarizes the results. 

 

Table 7 Ground Truth vs System Count (GT = 645) 
 

Strategy Counted Error 
(±) 

Relative Error 
(%) 

Box (Webcam) 696 +51 +7.91 
Line (Webcam) 579 -66 -10.23 
Edge (Webcam) 560 -85 -13.18 
Line (Video) 643 -2 -0.31 
Box (Video) 649 +4 +0.62 
Edge (Video) 602 -43 -6.67 
    
Video-based strategies showed minimal error, with 

Line (Video) deviating by only 0.31% (2 chickens), 
confirming high reliability. Still-image strategies, 
especially Edge (Image), showed the largest deviation 
(13.18%). 

These findings align with earlier results in confidence 
scores and CV%, reinforcing that video strategies are 
more stable and practical in real-world conveyor 
scenarios. 
 

3.7 Relation to Prior Studies 
These findings support prior research by Wu et al. 

(2025), Zhang et al. (2019), and Cheng et al. (2024), 
which found that video inputs are superior for detecting 
fast-moving poultry or pigs in processing lines. 
Specifically, ROI strategies like Middle Line reduce 
duplication and occlusion errors. 

Additionally, low CV values in video strategies 
indicate detection stability. Heatmap and dendrogram 
analysis confirmed statistically distinct behaviors between 
image- and video-based methods, offering insights for 
future system design tailored to real-world environments. 

 
3.8 Limitations of the Study  

While the proposed system demonstrates high 
accuracy in a real industrial setting, several limitations 
must be acknowledged. First, the validation was 
conducted using a single continuous video sequence from 
one specific slaughterhouse production line. 

Consequently, the system’s robustness against significant 
environmental variations such as drastic changes in 
lighting, different conveyor speeds, or alternative poultry 
breeds was not extensively tested. Second, the dataset 
size used for validation is relatively small compared to 
large-scale public benchmarks, which may limit the 
generalization of the findings. These factors suggest that 
while the current ROI-based strategies are effective for 
the tested environment, further validation on larger, 
multi-source datasets is required to ensure broad 
applicability. 

 
4. CONCLUSION 

This study provides the first empirical evaluation of 
ROI-based automated chicken counting strategies under 
real slaughterhouse conveyor conditions. Results show 
that video-based approaches, particularly the Midline and 
Central Box ROIs, achieved the highest performance. 
Instead of relying solely on count differences, regression 
metrics confirmed the precision of the system. The 
proposed Midline Crossing (Video) strategy achieved a 
Mean Absolute Error (MAE) of 2.30, a Mean Absolute 
Percentage Error (MAPE) of 0.74%, and a Root Mean 
Square Error (RMSE) of 2.70, proving its reliability for 
industrial application. In contrast, edge-based strategies 
tended to undercount due to occlusion and camera angle 
limitations, despite their effectiveness in avoiding double 
counting. Aligning ROIs with the conveyor center and 
relying on video input instead of static images 
significantly improved detection stability, as reflected by 
a low coefficient of variation (CV < 9%). Furthermore, 
the system demonstrated robust real-time capabilities 
with an average processing speed of 17.57 FPS (56.92 ms 
inference time) on standard CPU hardware, confirming 
its feasibility for continuous monitoring at industrial 
conveyor speeds without requiring high-end GPU 
acceleration. 

For industrial deployment, cameras should be 
installed perpendicularly above the conveyor to 
minimize occlusion, with confidence thresholds set 
between 0.65 and 0.70 to balance sensitivity and false 
positives. The integration of advanced tracking 
algorithms, such as DeepSORT or BoT-SORT, can 
further enhance recall and identity consistency. Adding 
feedback mechanisms to flag miscounts and confidence 
anomalies would also enable iterative model refinement 
and active learning. While Midline and Central Box ROIs 
achieved the highest accuracy, qualitative inspection 
revealed distinct error sources. Undercounting in Edge 
ROIs often resulted from carcass occlusion at the belt 
margins, while occasional misclassifications were linked 
to motion blur during peak conveyor speed, specular 
reflections from metallic surfaces, and carcasses 
appearing in abnormal poses. Providing a taxonomy of 
these error types highlights the operational challenges 
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that simple ROI placement cannot fully resolve. 
This study did not perform a full robustness test; 

however, several industrial factors are likely to affect 
performance, including camera height and tilt, LED 
flicker and banding, water droplets on lenses, and 
vibration from processing equipment. Future research 
should systematically vary these conditions to quantify 
their impact on accuracy and ensure reliable deployment 
across diverse slaughterhouse environments. Limitations 
of this study include the relatively small dataset, 
consisting of only 200 annotated images used for 
training, validation, and testing. Although these frames 
were collected across different recording days, the 
overall sample size remains restricted and may lead to 
sampling bias or overestimation of performance. In 
addition, system-level validation relied on a single 
independent five-minute video clip recorded on a 
separate day, which, while not part of the training data, 
still provides limited coverage of operational variability. 
Other limitations include the absence of robustness 
testing under variable conveyor speeds, inconsistent 
lighting, and camera vibration, as well as the lack of 
ablation studies on LLM-assisted development. While 
this setup is sufficient for proof-of-concept evaluation, 
future research should expand data collection across 
multiple days, shifts, and facilities, supported by larger 
annotated datasets, to strengthen robustness and 
generalizability in real slaughterhouse deployment. 
Future research should therefore expand dataset diversity 
across multiple clips, production shifts, and 
slaughterhouse environments; report additional effect 
size metrics (e.g., Cliff’s Delta, mAP); explore domain 
adaptation techniques for cross-site generalization; and 
conduct robustness testing across diverse industrial 
conditions. 

In conclusion, the proposed YOLOv8-based chicken 
counting system demonstrates high accuracy and 
reliability in real slaughterhouse conditions, offering 
practical recommendations for deployment and 
establishing a foundation for future innovation in 
automated poultry processing. Finally, while this study 
utilized a fixed confidence threshold of 0.3 to maximize 
detection recall for the tracker (Wojke et al., 2017), future 
research will focus on conducting a comprehensive 
sensitivity analysis. This will involve systematically 
varying threshold values to quantify their impact on 
precision-recall trade-offs and F1-scores, thereby fine-
tuning the system for varying lighting conditions in 
slaughterhouse environments. 
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