
 

   Abstract : Course timetabling usually arises every 
academic year and is solved by academic staff 
with/without course timetabling tool. The desirable 
timetable must be satisfied by hard constraints whilst soft 
constraints are not absolutely essential. Course 
timetabling is known to be NP-hard problem, which 
means that the computational time required to find the 
solution increases exponentially with problem size. 
Automated timetabling tool has been developed for 
university courses scheduling. In this work, two variants 
of Ant Colony Optimisation algorithms called Max-Min 
Ant System and Ant Colony System were applied to solve 
university course timetabling problem. A two-step 
sequential experiment was sensibly designed and carried 
out using six benchmarking course timetabling problems. 
The analysis of the obtained results suggested that each 
method performed best on one another based on its 
parameter configuration. 
 

   Keywords : Experimental Design and Analysis, 
Course Timetabling, Ant Colony Optimisation.  

1. INTRODUCTION 

   There have been comprehensive literature reviews 
on automated procedures for constructing efficient and 
desired timetables. The approaches adopted can be 
classified into four categories [1]: i) sequential methods, 
such as graph colouring [2]; ii) clustering methods [3]; iii) 
constraint-based methods e.g. integer programming [4]; 
and iv) metaheuristics methods [5] such as Genetic 
Algorithms (GA) [6], Simulated Annealing (SA) [7], 
Taboo Search (TS) [8], Neural Network (NN) [9], 
Artificial Immune System (AIS) [10, 11] and Ant Colony 
Optimisation (ACO) [12, 13]. In addition, new approaches 
including case-based reasoning approach [14], fuzzy 
methodology [15] and hyper-heuristics approach [16] 
have also been used to solve timetabling problems. 

   Ant Colony Optimisation has several advantages 
and has therefore received high attention in the last few 
decades. It performs multiple directional searches using a 
set of candidate solutions (ants) while most conventional 
optimisation methods conduct single directional search. 

ACO uses heuristic information related to the problem 
considered as part of the route construction process. Some 
ACO variants e.g. Ant Colony System (ACS) uses 
candidate list during the search process for composing its 
tour. Furthermore, stochastic transition rule based on the 
pheromone trial depositing by ants has been used to guide 
the ant exploring the solution space. Due to the 
approximation process for searching the optimal solution, 
the method usually performs faster than conventional 
optimisation methods when solving a huge problem but 
the optimal solution can not be guaranteed. 

   Although the advantages of ACO have previously 
been described, the applications of ACO to solve 
university course timetabling were rarely reported. For 
example, Socha et al. [12] have applied Max-Min Ant 
System (MMAS) to solve course timetabling problems, in 
which good solutions were obtained even for the large 
problem. Azimi [13] has also applied Ant Colony System 
(ACS) for solving examination timetabling problems. The 
ACS performance has been compared with other 
metaheuristics including GA, SA and TS. The research 
has shown that the solutions obtained from ACS were 
better than those using other techniques. An another 
example, Lutuksin et al. [17] have developed the 
automated timetabling tool called ANCOTT by applying 
Ant Colony Optimisation (ACO) to solve a course 
timetabling problem. However, there have been only three 
hard and soft constraints considered. The research has 
concluded that the timetables obtained from ACS satisfied 
all hard constraints and lowest violation of soft constraints 
both in terms of the best so far and its average. However, 
the parameters’ values used in the previous work have 
been assigned in an ad hoc fashion without statistical 
investigation. 

   Statistical tools called experimental design and 
analysis have been widely used for determining the 
influenced factors and investigating the appropriate 
parameter setting for the process or system [18]. The tools 
have therefore been applied for investigating the 
optimised parameter configuration of the metaheuristics 
such as GA [19-21], AIS [22], SA [23] and Ant System 
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(AS) [24]. 
   The objectives of this paper were to demonstrate 

the use of advance statistical design and analysis for 
investigating the appropriate parameters’ setting of Ant 
Colony Optimisation including Max-Min Ant System 
(MMAS) and Ant Colony System (ACS) and to compare 
the performance of the MMAS and ACS both in terms of 
the quality of the results obtained and the computational 
time required. The next section in this paper presents the 
definition of the course timetabling problems. Section 3 
explains the Ant Colony Optimisation followed by the 
architectural design of the Ant Colony based Timetabling 
Tool (ANCOTT). Section 5 presents the experimental 
design and analysis followed by conclusions. 

2. COURSE TIMETABLING PROBLEM 

   There are many types of timetabling problems 
such as employee timetabling [25], sports timetabling 
[26], transportation timetabling [27] and educational 
timetabling problem [12, 28]. For educational institutions 
e.g. high school, college or university, timetabling 
problem periodically arises every term and is solved 
manually by academic staff or automatically generated 
using software packages. Timetabling problem is known 
to be NP-hard problem [4], which means that the amount 
of computational time required to find the solution 
increases exponentially with problem size [29]. Many 
factors such as the number of academic staff, students, 
curriculum and institutional facilities are related to the 
complexity and the size of timetabling problem. 

   Generally, educational timetabling problem is a set 
of events (courses or exams) that must be appropriately 
assigned into a certain number of timeslots (time periods) 
and subject to hard and soft constraints [28]. A feasible 
timetable must satisfy all hard constraints in order to 
prevent clashes while soft constraints are not absolutely 
essential and should be minimised. Educational 
timetabling problem can be classified as examination and 
course timetabling including lectures, seminars, tutorials 
and laboratories. The similarity of both timetabling is that, 
for example, two events (courses or exams) cannot be 
scheduled in the same classroom at the same periods [30]. 
The difference is that compact course timetable is usually 
preferred, whereas spread examination timetable is 
generally required by students. 

   Course timetabling may be defined as the process 
of assigning courses and its corresponding lecturers to 
specific time periods throughout the working days and to 
specific classrooms suitable for the number of students 
registered and the needs of each course. In most 
educational institutions, the number of timeslots is equally 
split. Each room has a capacity of available seats. Finally, 
a curriculum is a group of courses based on curricula and 
is set according to the curricula published by the 
university. A feasible timetable is a set of all lectures of 
each course, properly assigned within a given number of 

rooms and time periods (timeslots) and satisfied by all 
hard constraints. In this work, the following hard and soft 
constraints were considered. 
 
Hard constraints 
1. Lectures (Hc1): All lectures of a course must be 

scheduled and assigned to distinct periods.  
2. Room occupancy (Hc2): Two or more lectures cannot 

take place in the same room at the same period. 
3. Conflicts (Hc3): Lectures of courses in the same 

curriculum or taught by the same teacher must be all 
scheduled in different periods. 

4. Unavailable constraints (Hc4): If a teacher of a course is 
not available to give lecture of the course at a given 
period, then no lecture of the course can be scheduled 
on the period. 

Soft constraints 
1. Room capacity (Sc1): For each lecture, the number of 

students attending the course must be less or equal than 
the number of seats of all the rooms hosting the 
lectures. 

2. Minimum working days (Sc2): The lectures of each 
course must be spread into a minimum number of days. 

3. Curriculum compactness (Sc3): Lectures belonging to a 
curriculum should be adjacent to each other (i.e., in 
consecutive periods). 

4. Room stability (Sc4): Each lecture of a course should be 
given in the same room. 
 
   The design task was to generate timetables for 

lecturers, students and classrooms that satisfy all hard 
constraints and avoid the violations of soft constraints 
[31]. A good solution must not violate hard constraints 
while soft constraints violation should be zero or closed to 
zero if possible. Total violation index (TVI) of a timetable 
can be determined by the equation (1). 

Minimise TVI = w1Sc1 + w2Sc2 + w3Sc3 + w4Sc4       (1) 
   Where w1 - w4 are the weights corresponding to 

the amount of violations of four soft constraints. The 
weight setting usually guides the search process to avoid a 
violation of soft constraint. If there is no priority between 
soft constraints, the weight setting can be equally 
specified. Otherwise, the high priority constraint may be 
more weighted. In this work, the weights (w1 - w4) are 
specified to 1, 5, 2 and 1, respectively. 

3. ANT COLONY OPTIMISATION (ACO) 

   Max-Min Ant System (MMAS) [32] and Ant 
Colony System (ACS) [33] are variants of Ant Colony 
Optimisation (ACO), which was inspired by the foraging 
behaviour of real ants to find the shortest path between the 
source foods to their nest [34-36]. The methods have been 
successfully applied for solving various combinatorial 
optimisation problems e.g. travelling salesman [37], 
scheduling [38] and assignment problems [39]. The basic 
concept of ACO is the use of a probabilistic solution 
construction mechanism based on stigmergy. Two main 



 

phases of the ACO metaheuristic feature are the solution 
construction (where the travelling routes or tours are 
constructed by the ants) and the pheromone update, which 
includes pheromone evaporation and pheromone 
deposition when the ants completed their tours. The 
heuristic information and the pheromone values are 
uniquely used to determine the probabilities of moving 
decisions. 

   The behaviour of real ants to find the shortest path 
can be shown in Figure 1. At time = 0, ants move from 
node A to node C via node B or D equally based on the 
probability of selection, in which the heuristic information 
(distance) is considered more than pheromone 
information. During periods of the journey (time = 5), 
ants deposit some pheromone on their trail when they 
complete their tours (back from node C to A). At the same 
time, pheromones on the trails are also evaporated 
automatically. Finally, at time = 10, ants obviously move 
on the shorter A-B-C path having more amount of 
pheromones than A-D-C path. In this stage, pheromone 
information is considered more than heuristic information. 

 

 
Fig. 1.  The moving behaviour of ants [33]. 

 

   There are some differences between MMAS with 
ACS. ACS performs the accumulated search experience 
called pseudorandom proportional rule which is used to 
determine the probability of ants moving while MMAS 
uses random proportional rule. ACS conducts both local 
and global pheromone update procedure but MMAS only 
uses global pheromone update procedure. Finally, only 
MMAS specifies boundary of pheromone level (max-min) 
on the trails [34]. The pseudo code of the ACO 
procedures is shown in Figure 2. 

 

 
 

Fig. 2.  Pseudo code of the Ant Colony Optimisation. 

4. ANT COLONY BASED TIMETABLING TOOL 

   The Ant Colony based Timetabling Tool 
(ANCOTT) program has been coded in modular style 
using a general purpose programming language called 
TCL/TK [40]. The development of the ANCOTT was 
based on three principles; program structure (see Figure 
2), model design (see Figure 3) and user interface (see 
Figure 4). Figure 3 shows the architectural design of the 
ANCOTT system, which is mainly categorised into three 
phases; input, timetabling and output phases. In the first 
phase, the input data including classrooms, students, 
courses, teachers and timetabling constraints must be 
specified by scheduler via graphical user interface (GUI) 
provided. All data is then encoded in the second phase 
where course scheduling is performed using Ant Colony 
Optimisation methods, in which its parameters must also 
be assigned via the GUI. The evaluation process of the 
timetables generated is based on the desired hard and soft 
constraints. In the final phase, the feasible timetables for 
each teacher, student and room are reported. 

 

 
Fig. 3.  Structural architecture of the system [17]. 

 

   From Figure 4, it can be seen that the GUI 
provided within the ANCOTT helps user to easily assign 
the values of each parameter, random seed number, enable 
and disable hard and soft constraints considered, weight 
of the soft constraints and priorities of timetabling 
process. 

5. EXPERIMENTAL DESIGN AND ANALYSIS 

   This section is aimed to present computational 
experiments conducted using MMAS and ACS algorithms 
to solve benchmarking instant problems (shown in Table 
1) provided in the international timetabling competition 
[30] organised by the timetabling research groups from 
various universities. The objective of the competition was 
to share the knowledge between researchers and 
practitioners on how to use the techniques or methodology 
for solving timetabling problems. In this work, the 
timetables generated by ANCOTT program were 
measured by counting the number of violations on the soft 
constraints mentioned in section 2. Personal computers 
with Core2 Quad 2.66 GHz CPU and 4 GB RAM was 
used to determine the simulation time required to execute 
a computational run. 



 

 
Fig. 4.  Snapshots of the graphical user interface provided within the ANCOTT. 

 
 

Table 1 Characteristics of benchmarking instant problems considered in this work. 

Problem 
number 

Characteristics of course timetabling problems 

Courses Classrooms Days/week Periods/day 
Teacher

s 
Curricula 

Unavailable 
constrains 

1 30 6 5 6 24 14 53 
2 30 5 5 9 24 13 94 
3 54 9 6 6 47 139 771 
4 72 16 5 5 61 68 382 
5 79 18 5 5 70 57 396 
6 85 17 5 5 68 60 486 

 
 

5.1 Experiment 1 

    The first experiment was aimed to demonstrate the 
use of advance statistical design and analysis for 
investigating the appropriate parameter setting of both 
MMAS and ACS algorithms for solving the 
benchmarking problems. Four ACO’s parameters 
including number of ants multiply number of iterations 
(A*I), pheromone weight (α), heuristic information weight 
(β) and pheromone evaporation rate (ρ) and its level 
considered are shown in Table 2. The values of ACO’s 
parameters were adopted from previous research [41]. 
Due to the number of parameters and its level, there will 
be a difficulty on the amount of experimental work when 
adopting conventional statistical design. 

   One-third fractional factorial (      ) experimental 
design [18] was adopted in this experiment for decreasing 
the number of computational runs by 66.67%. The 
computational experiment was based on the first instant 

problem and repeated five times using different random 
seed numbers. The computational results obtained from 
135 (33*5) runs were analysed using a general linear 
model form of analysis of variance (ANOVA). Table 3 
shows ANOVA table consisting of Source of Variation, 
Degrees of Freedom (DF), F and P values. A factor with 
value of P≤0.05 was considered statistically significant 
with 95% confidence interval. 
  From Table 3, it can be seen that all main factors 
 
 

Table 2 Experimental factors and its levels. 

Factor
s 

Levels 
Coded Values 

Low (-
1) 

Medium 
(0) 

High 
(+1) 

A*I 3 20*45 30*30 45*20 
α 3 0.01 0.50 0.99 
β 3 0.00 2.50 5.00 
ρ 3 0.01 0.50 0.99 
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of both MMAS and ACS algorithms except the 
combination of ants and iterations (A*I) were statistically 
significant with 95% confidence interval. Besides, the 
most influence factor for this experiment was heuristic 
information (β) factor because of the extremely F value 
and the next influence factors were pheromone weight (α), 
pheromone evaporation rate (ρ), and ants and iterations 
(A*I), respectively. The main effect plots of MMAS 
shown in Figure 5 suggested that those factors including 
A*I, α, β, and ρ should be at 20*45 or 30*30, 0.99, 2.50 or 
5.00 and 0.50 or 0.99, respectively. Whilst the main effect 
plots of the ACS parameters shown in Figure 6 suggested 
that those factors should be at 30*30 or 45*20, 0.01, 2.50 
or 5.00 and 0.01, respectively. It should be noted that two-
interaction term cannot be considered in the ANOVA 
table due to a lack of degrees of freedom obtained from 
the proposed design. 

 
Table 3 ANOVA on the ACO’s parameters. 

Source of 
Variatio

n 
DF 

MMAS ACS 

F P F P 

A*I 2 2.86 0.061 2.09 0.128 
α 2 35.89 0.000 8.13 0.000 
β 2 4027.1 0.000 1371.6 0.000 
ρ 2 9.49 0.000 18.86 0.000

Error 126     
Total 134     

 
   A sequential sub-experiment was conducted to 

verify the appropriate parameter setting identified 
previously for both algorithms by comparing the average 
of the best so far solutions obtained with those using 
randomly combined parameter setting based on five 
replications as show in Table 4.  

  It can be seen that the averages of the total 
violations associated with the timetables obtained from 
 

Table 4 Results obtained from different settings. 

Methods 

Parameters’ settings 
Improv
e (%) 

Identified 
from 

experiment 

Random 
combination 

MMAS 72 97 25.77 

ACS 110.8 147.5 24.88 
 
the appropriate parameter setting identified previously 
were dramatically lower than those results with random 
parameter settings. This demonstration supported that the 
performance of the metaheuristics depends on its 
mechanism and parameter setting. The performance can be 
improved up to 25 percents using the appropriate 
parameter configuration. 
 

5.2 Experiment 2 

  This experiment was designed to compare the 
performance of MMAS and ACS for solving six 
benchmarking problems detailed in Table 1. The 
parameter settings for both methods were adopted from 
the previous experiment. The experimental results were 
statistically analysed in terms of the minimum, maximum, 
average, standard deviation and the computational time 
required of the best so far solutions (timetables) obtained 
from the problems, each of which was conducted with 
five replications using different random seed numbers. 
The analysis on the experimental results was summarised 
in Table 5. According to the minimum, maximum and 
mean values, it can be seen that the MMAS produced the 
timetables with lower constraint violations than those 
using the ACS for the problem number 1 and 2, which are 
relatively smaller than the remaining problems. 
Nevertheless, the ACS performed better than the MMAS 
for the larger problems. The average computational times 
required by both algorithms were marginally different on 
all benchmarking problems. 
 

 
 

Fig. 5.  Main effect plots of MMAS algorithm. 
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Fig. 6.  Main effect plots of ACS algorithm. 
 

 
6. CONCLUSIONS 

   Ant Colony based Timetabling Tool has been 
developed to solve university course timetabling problem. 
This paper demonstrated the use of the experimental 
design and analysis tools for investigating the appropriate 
parameters setting before sequentially study the 
performance of the MMAS and ACS algorithms. The 
analysis on experimental results indicated that all 
parameters except the combination of ants and iterations 
were statistically significant with 95% confidence 
interval. The most influence factor was the heuristic 
information (β), which should be set between 2.5-5, 

followed by the pheromone weight (α) and the pheromone 
evaporation rate (ρ). However, the appropriate parameter 
setting could be varied between datasets due to the nature 
of the problem domains and its complexity. It was also 
found that the results can be improved up to 25 percents 
having use of appropriate parameter setting. The 
sequential experiment indicated that the quality of 
timetables produced by MMAS is better than those 
obtained from ACS for relatively small problems whilst 
ACS performed better than MMAS for larger problems. 
The average execution times required by both algorithms 
slightly altered on all benchmarking problems. 

 
Table 5 The computational results obtained from the MMAS and ACS method. 

Problem 
number  

Methods 
Best so far solutions 

Minimum Maximum Average (Av.) Standard deviation 
Av. execution time 

(Hours) 

1 
MMAS 62 78 72 6.52 1.08 

ACS 105 117 110.8 5.36 1.05 

2 
MMAS 22 31 26 3.24 2.25 

ACS 52 59 56.2 3.03 2.30 

3 
MMAS 520 566 539.4 18.08 3.66 

ACS 515 541 522 10.98 3.86 

4 
MMAS 406 458 426.4 23.69 4.09 

ACS 349 385 359 15.54 4.33 

5 
MMAS 339 369 355 11.11 5.91 

ACS 263 286 274 8.89 5.92 

6 
MMAS 405 441 424 15.33 5.54

ACS 331 341 336.6 4.39 5.57 
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