

 Abstract : Course timetabling usually arises every
academic year and is solved by academic staff
with/without course timetabling tool. The desirable
timetable must be satisfied by hard constraints whilst soft
constraints are not absolutely essential. Course
timetabling is known to be NP-hard problem, which
means that the computational time required to find the
solution increases exponentially with problem size.
Automated timetabling tool has been developed for
university courses scheduling. In this work, two variants
of Ant Colony Optimisation algorithms called Max-Min
Ant System and Ant Colony System were applied to solve
university course timetabling problem. A two-step
sequential experiment was sensibly designed and carried
out using six benchmarking course timetabling problems.
The analysis of the obtained results suggested that each
method performed best on one another based on its
parameter configuration.

 Keywords : Experimental Design and Analysis,
Course Timetabling, Ant Colony Optimisation.

1. INTRODUCTION

 There have been comprehensive literature reviews
on automated procedures for constructing efficient and
desired timetables. The approaches adopted can be
classified into four categories [1]: i) sequential methods,
such as graph colouring [2]; ii) clustering methods [3]; iii)
constraint-based methods e.g. integer programming [4];
and iv) metaheuristics methods [5] such as Genetic
Algorithms (GA) [6], Simulated Annealing (SA) [7],
Taboo Search (TS) [8], Neural Network (NN) [9],
Artificial Immune System (AIS) [10, 11] and Ant Colony
Optimisation (ACO) [12, 13]. In addition, new approaches
including case-based reasoning approach [14], fuzzy
methodology [15] and hyper-heuristics approach [16]
have also been used to solve timetabling problems.

 Ant Colony Optimisation has several advantages
and has therefore received high attention in the last few
decades. It performs multiple directional searches using a
set of candidate solutions (ants) while most conventional
optimisation methods conduct single directional search.

ACO uses heuristic information related to the problem
considered as part of the route construction process. Some
ACO variants e.g. Ant Colony System (ACS) uses
candidate list during the search process for composing its
tour. Furthermore, stochastic transition rule based on the
pheromone trial depositing by ants has been used to guide
the ant exploring the solution space. Due to the
approximation process for searching the optimal solution,
the method usually performs faster than conventional
optimisation methods when solving a huge problem but
the optimal solution can not be guaranteed.

 Although the advantages of ACO have previously
been described, the applications of ACO to solve
university course timetabling were rarely reported. For
example, Socha et al. [12] have applied Max-Min Ant
System (MMAS) to solve course timetabling problems, in
which good solutions were obtained even for the large
problem. Azimi [13] has also applied Ant Colony System
(ACS) for solving examination timetabling problems. The
ACS performance has been compared with other
metaheuristics including GA, SA and TS. The research
has shown that the solutions obtained from ACS were
better than those using other techniques. An another
example, Lutuksin et al. [17] have developed the
automated timetabling tool called ANCOTT by applying
Ant Colony Optimisation (ACO) to solve a course
timetabling problem. However, there have been only three
hard and soft constraints considered. The research has
concluded that the timetables obtained from ACS satisfied
all hard constraints and lowest violation of soft constraints
both in terms of the best so far and its average. However,
the parameters’ values used in the previous work have
been assigned in an ad hoc fashion without statistical
investigation.

 Statistical tools called experimental design and
analysis have been widely used for determining the
influenced factors and investigating the appropriate
parameter setting for the process or system [18]. The tools
have therefore been applied for investigating the
optimised parameter configuration of the metaheuristics
such as GA [19-21], AIS [22], SA [23] and Ant System

Experimental Design and Analysis on Parameter
Investigation and Performance Comparison of Ant

Algorithms for Course Timetabling Problem

T. Lutuksin, A. Chainual and P. Pongcharoen*

Department of Industrial Engineering, Faculty of Engineering, Naresuan University, Phitsanulok, 65000
*Email: pupongp@yahoo.com, pupongp@nu.ac.th

(AS) [24].
 The objectives of this paper were to demonstrate

the use of advance statistical design and analysis for
investigating the appropriate parameters’ setting of Ant
Colony Optimisation including Max-Min Ant System
(MMAS) and Ant Colony System (ACS) and to compare
the performance of the MMAS and ACS both in terms of
the quality of the results obtained and the computational
time required. The next section in this paper presents the
definition of the course timetabling problems. Section 3
explains the Ant Colony Optimisation followed by the
architectural design of the Ant Colony based Timetabling
Tool (ANCOTT). Section 5 presents the experimental
design and analysis followed by conclusions.

2. COURSE TIMETABLING PROBLEM

 There are many types of timetabling problems
such as employee timetabling [25], sports timetabling
[26], transportation timetabling [27] and educational
timetabling problem [12, 28]. For educational institutions
e.g. high school, college or university, timetabling
problem periodically arises every term and is solved
manually by academic staff or automatically generated
using software packages. Timetabling problem is known
to be NP-hard problem [4], which means that the amount
of computational time required to find the solution
increases exponentially with problem size [29]. Many
factors such as the number of academic staff, students,
curriculum and institutional facilities are related to the
complexity and the size of timetabling problem.

 Generally, educational timetabling problem is a set
of events (courses or exams) that must be appropriately
assigned into a certain number of timeslots (time periods)
and subject to hard and soft constraints [28]. A feasible
timetable must satisfy all hard constraints in order to
prevent clashes while soft constraints are not absolutely
essential and should be minimised. Educational
timetabling problem can be classified as examination and
course timetabling including lectures, seminars, tutorials
and laboratories. The similarity of both timetabling is that,
for example, two events (courses or exams) cannot be
scheduled in the same classroom at the same periods [30].
The difference is that compact course timetable is usually
preferred, whereas spread examination timetable is
generally required by students.

 Course timetabling may be defined as the process
of assigning courses and its corresponding lecturers to
specific time periods throughout the working days and to
specific classrooms suitable for the number of students
registered and the needs of each course. In most
educational institutions, the number of timeslots is equally
split. Each room has a capacity of available seats. Finally,
a curriculum is a group of courses based on curricula and
is set according to the curricula published by the
university. A feasible timetable is a set of all lectures of
each course, properly assigned within a given number of

rooms and time periods (timeslots) and satisfied by all
hard constraints. In this work, the following hard and soft
constraints were considered.

Hard constraints
1. Lectures (Hc1): All lectures of a course must be

scheduled and assigned to distinct periods.
2. Room occupancy (Hc2): Two or more lectures cannot

take place in the same room at the same period.
3. Conflicts (Hc3): Lectures of courses in the same

curriculum or taught by the same teacher must be all
scheduled in different periods.

4. Unavailable constraints (Hc4): If a teacher of a course is
not available to give lecture of the course at a given
period, then no lecture of the course can be scheduled
on the period.

Soft constraints
1. Room capacity (Sc1): For each lecture, the number of

students attending the course must be less or equal than
the number of seats of all the rooms hosting the
lectures.

2. Minimum working days (Sc2): The lectures of each
course must be spread into a minimum number of days.

3. Curriculum compactness (Sc3): Lectures belonging to a
curriculum should be adjacent to each other (i.e., in
consecutive periods).

4. Room stability (Sc4): Each lecture of a course should be
given in the same room.

 The design task was to generate timetables for

lecturers, students and classrooms that satisfy all hard
constraints and avoid the violations of soft constraints
[31]. A good solution must not violate hard constraints
while soft constraints violation should be zero or closed to
zero if possible. Total violation index (TVI) of a timetable
can be determined by the equation (1).

Minimise TVI = w1Sc1 + w2Sc2 + w3Sc3 + w4Sc4 (1)
 Where w1 - w4 are the weights corresponding to

the amount of violations of four soft constraints. The
weight setting usually guides the search process to avoid a
violation of soft constraint. If there is no priority between
soft constraints, the weight setting can be equally
specified. Otherwise, the high priority constraint may be
more weighted. In this work, the weights (w1 - w4) are
specified to 1, 5, 2 and 1, respectively.

3. ANT COLONY OPTIMISATION (ACO)

 Max-Min Ant System (MMAS) [32] and Ant
Colony System (ACS) [33] are variants of Ant Colony
Optimisation (ACO), which was inspired by the foraging
behaviour of real ants to find the shortest path between the
source foods to their nest [34-36]. The methods have been
successfully applied for solving various combinatorial
optimisation problems e.g. travelling salesman [37],
scheduling [38] and assignment problems [39]. The basic
concept of ACO is the use of a probabilistic solution
construction mechanism based on stigmergy. Two main

phases of the ACO metaheuristic feature are the solution
construction (where the travelling routes or tours are
constructed by the ants) and the pheromone update, which
includes pheromone evaporation and pheromone
deposition when the ants completed their tours. The
heuristic information and the pheromone values are
uniquely used to determine the probabilities of moving
decisions.

 The behaviour of real ants to find the shortest path
can be shown in Figure 1. At time = 0, ants move from
node A to node C via node B or D equally based on the
probability of selection, in which the heuristic information
(distance) is considered more than pheromone
information. During periods of the journey (time = 5),
ants deposit some pheromone on their trail when they
complete their tours (back from node C to A). At the same
time, pheromones on the trails are also evaporated
automatically. Finally, at time = 10, ants obviously move
on the shorter A-B-C path having more amount of
pheromones than A-D-C path. In this stage, pheromone
information is considered more than heuristic information.

Fig. 1. The moving behaviour of ants [33].

 There are some differences between MMAS with
ACS. ACS performs the accumulated search experience
called pseudorandom proportional rule which is used to
determine the probability of ants moving while MMAS
uses random proportional rule. ACS conducts both local
and global pheromone update procedure but MMAS only
uses global pheromone update procedure. Finally, only
MMAS specifies boundary of pheromone level (max-min)
on the trails [34]. The pseudo code of the ACO
procedures is shown in Figure 2.

Fig. 2. Pseudo code of the Ant Colony Optimisation.

4. ANT COLONY BASED TIMETABLING TOOL

 The Ant Colony based Timetabling Tool
(ANCOTT) program has been coded in modular style
using a general purpose programming language called
TCL/TK [40]. The development of the ANCOTT was
based on three principles; program structure (see Figure
2), model design (see Figure 3) and user interface (see
Figure 4). Figure 3 shows the architectural design of the
ANCOTT system, which is mainly categorised into three
phases; input, timetabling and output phases. In the first
phase, the input data including classrooms, students,
courses, teachers and timetabling constraints must be
specified by scheduler via graphical user interface (GUI)
provided. All data is then encoded in the second phase
where course scheduling is performed using Ant Colony
Optimisation methods, in which its parameters must also
be assigned via the GUI. The evaluation process of the
timetables generated is based on the desired hard and soft
constraints. In the final phase, the feasible timetables for
each teacher, student and room are reported.

Fig. 3. Structural architecture of the system [17].

 From Figure 4, it can be seen that the GUI
provided within the ANCOTT helps user to easily assign
the values of each parameter, random seed number, enable
and disable hard and soft constraints considered, weight
of the soft constraints and priorities of timetabling
process.

5. EXPERIMENTAL DESIGN AND ANALYSIS

 This section is aimed to present computational
experiments conducted using MMAS and ACS algorithms
to solve benchmarking instant problems (shown in Table
1) provided in the international timetabling competition
[30] organised by the timetabling research groups from
various universities. The objective of the competition was
to share the knowledge between researchers and
practitioners on how to use the techniques or methodology
for solving timetabling problems. In this work, the
timetables generated by ANCOTT program were
measured by counting the number of violations on the soft
constraints mentioned in section 2. Personal computers
with Core2 Quad 2.66 GHz CPU and 4 GB RAM was
used to determine the simulation time required to execute
a computational run.

Fig. 4. Snapshots of the graphical user interface provided within the ANCOTT.

Table 1 Characteristics of benchmarking instant problems considered in this work.

Problem
number

Characteristics of course timetabling problems

Courses Classrooms Days/week Periods/day
Teacher

s
Curricula

Unavailable
constrains

1 30 6 5 6 24 14 53
2 30 5 5 9 24 13 94
3 54 9 6 6 47 139 771
4 72 16 5 5 61 68 382
5 79 18 5 5 70 57 396
6 85 17 5 5 68 60 486

5.1 Experiment 1

 The first experiment was aimed to demonstrate the
use of advance statistical design and analysis for
investigating the appropriate parameter setting of both
MMAS and ACS algorithms for solving the
benchmarking problems. Four ACO’s parameters
including number of ants multiply number of iterations
(A*I), pheromone weight (α), heuristic information weight
(β) and pheromone evaporation rate (ρ) and its level
considered are shown in Table 2. The values of ACO’s
parameters were adopted from previous research [41].
Due to the number of parameters and its level, there will
be a difficulty on the amount of experimental work when
adopting conventional statistical design.

 One-third fractional factorial () experimental
design [18] was adopted in this experiment for decreasing
the number of computational runs by 66.67%. The
computational experiment was based on the first instant

problem and repeated five times using different random
seed numbers. The computational results obtained from
135 (33*5) runs were analysed using a general linear
model form of analysis of variance (ANOVA). Table 3
shows ANOVA table consisting of Source of Variation,
Degrees of Freedom (DF), F and P values. A factor with
value of P≤0.05 was considered statistically significant
with 95% confidence interval.
 From Table 3, it can be seen that all main factors

Table 2 Experimental factors and its levels.

Factor
s

Levels
Coded Values

Low (-
1)

Medium
(0)

High
(+1)

A*I 3 20*45 30*30 45*20
α 3 0.01 0.50 0.99
β 3 0.00 2.50 5.00
ρ 3 0.01 0.50 0.99

14
IV3 

of both MMAS and ACS algorithms except the
combination of ants and iterations (A*I) were statistically
significant with 95% confidence interval. Besides, the
most influence factor for this experiment was heuristic
information (β) factor because of the extremely F value
and the next influence factors were pheromone weight (α),
pheromone evaporation rate (ρ), and ants and iterations
(A*I), respectively. The main effect plots of MMAS
shown in Figure 5 suggested that those factors including
A*I, α, β, and ρ should be at 20*45 or 30*30, 0.99, 2.50 or
5.00 and 0.50 or 0.99, respectively. Whilst the main effect
plots of the ACS parameters shown in Figure 6 suggested
that those factors should be at 30*30 or 45*20, 0.01, 2.50
or 5.00 and 0.01, respectively. It should be noted that two-
interaction term cannot be considered in the ANOVA
table due to a lack of degrees of freedom obtained from
the proposed design.

Table 3 ANOVA on the ACO’s parameters.

Source of
Variatio

n
DF

MMAS ACS

F P F P

A*I 2 2.86 0.061 2.09 0.128
α 2 35.89 0.000 8.13 0.000
β 2 4027.1 0.000 1371.6 0.000
ρ 2 9.49 0.000 18.86 0.000

Error 126
Total 134

 A sequential sub-experiment was conducted to

verify the appropriate parameter setting identified
previously for both algorithms by comparing the average
of the best so far solutions obtained with those using
randomly combined parameter setting based on five
replications as show in Table 4.

 It can be seen that the averages of the total
violations associated with the timetables obtained from

Table 4 Results obtained from different settings.

Methods

Parameters’ settings
Improv
e (%)

Identified
from

experiment

Random
combination

MMAS 72 97 25.77

ACS 110.8 147.5 24.88

the appropriate parameter setting identified previously
were dramatically lower than those results with random
parameter settings. This demonstration supported that the
performance of the metaheuristics depends on its
mechanism and parameter setting. The performance can be
improved up to 25 percents using the appropriate
parameter configuration.

5.2 Experiment 2

 This experiment was designed to compare the
performance of MMAS and ACS for solving six
benchmarking problems detailed in Table 1. The
parameter settings for both methods were adopted from
the previous experiment. The experimental results were
statistically analysed in terms of the minimum, maximum,
average, standard deviation and the computational time
required of the best so far solutions (timetables) obtained
from the problems, each of which was conducted with
five replications using different random seed numbers.
The analysis on the experimental results was summarised
in Table 5. According to the minimum, maximum and
mean values, it can be seen that the MMAS produced the
timetables with lower constraint violations than those
using the ACS for the problem number 1 and 2, which are
relatively smaller than the remaining problems.
Nevertheless, the ACS performed better than the MMAS
for the larger problems. The average computational times
required by both algorithms were marginally different on
all benchmarking problems.

Fig. 5. Main effect plots of MMAS algorithm.

T
ot

al
 V

io
la

ti
on

 I
n

d
ex

 (
T

V
I)

Fig. 6. Main effect plots of ACS algorithm.

6. CONCLUSIONS

 Ant Colony based Timetabling Tool has been
developed to solve university course timetabling problem.
This paper demonstrated the use of the experimental
design and analysis tools for investigating the appropriate
parameters setting before sequentially study the
performance of the MMAS and ACS algorithms. The
analysis on experimental results indicated that all
parameters except the combination of ants and iterations
were statistically significant with 95% confidence
interval. The most influence factor was the heuristic
information (β), which should be set between 2.5-5,

followed by the pheromone weight (α) and the pheromone
evaporation rate (ρ). However, the appropriate parameter
setting could be varied between datasets due to the nature
of the problem domains and its complexity. It was also
found that the results can be improved up to 25 percents
having use of appropriate parameter setting. The
sequential experiment indicated that the quality of
timetables produced by MMAS is better than those
obtained from ACS for relatively small problems whilst
ACS performed better than MMAS for larger problems.
The average execution times required by both algorithms
slightly altered on all benchmarking problems.

Table 5 The computational results obtained from the MMAS and ACS method.

Problem
number

Methods
Best so far solutions

Minimum Maximum Average (Av.) Standard deviation
Av. execution time

(Hours)

1
MMAS 62 78 72 6.52 1.08

ACS 105 117 110.8 5.36 1.05

2
MMAS 22 31 26 3.24 2.25

ACS 52 59 56.2 3.03 2.30

3
MMAS 520 566 539.4 18.08 3.66

ACS 515 541 522 10.98 3.86

4
MMAS 406 458 426.4 23.69 4.09

ACS 349 385 359 15.54 4.33

5
MMAS 339 369 355 11.11 5.91

ACS 263 286 274 8.89 5.92

6
MMAS 405 441 424 15.33 5.54

ACS 331 341 336.6 4.39 5.57

7. ACKNOWLEDGEMENTS

 The corresponding author would like to
acknowledge the Naresuan University since this work was
part of the research project supported by the Naresuan
University Research Fund under the grant number EN-
AR-053/2552.

8. REFERENCES

[1] A. Schaerf, "A survey of automated timetabling,"
Artificial Intelligence Review, vol. 13, pp. 87-127,
1999.

[2] A. S. Asratian and D. de Werra, "A generalized
class-teacher model for some timetabling problems,"
European Journal of Operational Research, vol.
143, pp. 531-542, 2002.

T
ot

al
 V

io
la

ti
on

 I
n

d
ex

 (
T

V
I)

[3] N. Balakrishnan, A. Lucena, and R. T. Wong,
"Scheduling examinations to reduce second-order
conflicts," Computers & Operations Research, vol.
19, pp. 353-361, 1992.

[4] S. Daskalaki, T. Birbas, and E. Housos, "An integer
programming formulation for a case study in
university timetabling," European Journal of
Operational Research, vol. 153, pp. 117-135, 2004.

[5] C. Blum and A. Roli, "Metaheuristics in
combinatorial optimization: Overview and
conceptual comparison," ACM Computing Surveys,
vol. 35, pp. 268-308, 2003.

[6] P. Pongcharoen, W. Promtet, P. Yenradee, and C.
Hicks, "Stochastic Optimisation Timetabling Tool
for university course scheduling," International
Journal of Production Economics, vol. 112, pp. 903-
918, 2008.

[7] W. Chainate, P. Thapatsuwan, and P. Pongcharoen,
"Investigation on cooling schemes and parameters of
simulated annealing for timetabling university
course," in Proceedings of the International
Conference on Advanced Computer Theory and
Engineering, Phuket, Thailand, 2008.

[8] R. Alvarez-Valdes, E. Crespo, and J. M. Tamarit,
"Design and implementation of a course scheduling
system using Tabu Search," European Journal of
Operational Research, vol. 137, pp. 512-523, 2002.

[9] M. P. Carrasco and M. V. Pato, "A comparison of

discrete and continuous neural network approaches
to solve the class/teacher timetabling problem,"
European Journal of Operational Research, vol.
153, pp. 65-79, 2004.

[10] D. Dasgupta, Artificial Immune Systems and Their
Applications. Heidelberg: Springer, 1998.

[11] Y. L. He, S. C. Hui, and E. M. K. Lai, "Automatic
timetabling using artificial immune system,"
Algorithmic Applications in Management,
Proceedings, vol. 3521, pp. 55-65, 2005.

[12] K. Socha, M. Sampels, and M. Manfrin, "Ant
algorithms for the university course timetabling
problem with regard to the state-of-the-art,"
Applications of Evolutionary Computing, vol. 2611,
pp. 334-345, 2003.

[13] Z. Naji Azimi, "Hybrid heuristics for Examination
Timetabling problem," Applied Mathematics and
Computation, vol. 163, pp. 705-733, 2005.

[14] S. Petrovic, Y. Yang, and M. Dror, "Case-based
selection of initialisation heuristics for metaheuristic
examination timetabling," Expert Systems with
Applications, vol. 33, pp. 772-785, 2007.

[15] H. Asmuni, E. K. Burke, J. M. Garibaldi, and B.
McCollum, "Fuzzy multiple heuristic orderings for
examination timetabling," Practice and Theory of
Automated Timetabling V, vol. 3616, pp. 334-353,
2005.

[16] E. Burke, M. Dror, S. Petrovic, and R. Qu, "Hybrid
Graph Heuristics within a Hyper-Heuristic Approach
to Exam Timetabling Problems," The Next Wave in

Computing, Optimization, and Decision
Technologies, pp. 79-91, 2005.

[17] T. Lutuksin, A. Chainual, and P. Pongcharoen,
"Development of course timetabling tool: an ant
colony approach," in Proceedings of the 5th
International Conference on Developing Real-Life
Planning Experiences: Education Reform through
Educational Standards, KMITL, Bangkok, 2007.

[18] D. C. Montgomery, Design and Analysis of
Experiments, 5 ed. New York: John Wiley & Sons,
2001.

[19] P. Pongcharoen, C. Hicks, and P. M. Braiden, "The
development of genetic algorithms for the finite
capacity scheduling of complex products, with
multiple levels of product structure," European
Journal of Operational Research, vol. 152, pp. 215-
225, 2004.

[20] P. Pongcharoen, C. Hicks, P. M. Braiden, and D. J.
Stewardson, "Determining optimum Genetic
Algorithm parameters for scheduling the
manufacturing and assembly of complex products,"
International Journal of Production Economics, vol.
78, pp. 311-322, 2002.

[21] P. Pongcharoen, D. J. Stewardson, C. Hicks, and P.
M. Braiden, "Applying designed experiments to
optimize the performance of genetic algorithms used
for scheduling complex products in the capital goods
industry," Journal of Applied Statistics, vol. 28, pp.
441-455, 2001.

[22] P. Pongcharoen, W. Chainate, and S. Pongcharoen,
"Improving artificial immune system performance:
inductive bias and alternative mutations," Lecture
Notes in Computer Science, vol. 5132, pp. 220-231,
2008.

[23] W. Chainate, P. Thapatsuwan, and P. Pongcharoen,
"Investigation on cooling schemes and parameters of
simulated annealing for timetabling university
courses," in Proceedings of the International
Conference on Advanced Computer Theory and
Engineering, Phuket, Thailand, 2008.

[24] N. Figlali, C. Ozkale, O. Engin, and A. Figlali,
"Investigation of Ant System parameter interactions
by using design of experiments for job-shop
scheduling problems," Computers & Industrial
Engineering, vol. 56, pp. 538-559, 2009.

 [25] W. J. Gutjahr and M. S. Rauner, "An ACO algorithm
for a dynamic regional nurse-scheduling problem in
Austria," Computers & Operations Research, vol.
34, pp. 642-666, 2007.

[26] T. Bartsch, A. Drexl, and S. Kroger, "Scheduling the
professional soccer leagues of Austria and
Germany," Computers & Operations Research, vol.
33, pp. 1907-1937, 2006.

[27] Z. Liu, J. Shen, H. Wang, and W. Yang, "Regional
Bus Timetabling Model with Synchronization,"
Journal of Transportation Systems Engineering and
Information Technology, vol. 7, pp. 109-112, 2007.

[28] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic,
and R. Qu, "A graph-based hyper-heuristic for

educational timetabling problems," European
Journal of Operational Research, vol. 176, pp. 177-
192, 2007.

[29] A. Chainual, T. Lutuksin, and P. Pongcharoen,
"Computer based scheduling tool for multi-product
scheduling problems," International Journal of the
Computer, the Internet and Management, vol. 15,
pp. 26.1-6, 2007.

[30] L. Di Gaspero, B. McCollum, and A. Schaerf, "The
Second International Timetabling Competition (ITC-
2007): Curriculum-based Course Timetabling
Track," in Proceedings of the 14th RCRA workshop
on Experimental Evaluation of Algorithms for
Solving Problems with Combinatorial Explosion,
Rome, Italy, 2007.

[31] P. Kostuch, "The University Course Timetabling
Problem with a Three-Phase Approach," Practice
and Theory of Automated Timetabling V, pp. 109-
125, 2005.

[32] T. Stützle and H. Hoos, "Improvements on the ant
system: Introducing MAX-MIN ant system," in
Proceedings of the International Conference on
Artificial Neural Networks and Genetic Algorithms,
1997.

[33] M. Dorigo and L. M. Gambardella, "Ant Colony
System: A Cooperative Learning Approach to the
Traveling Salesman Problem," IEEE Transactions
on Evolutionary Computation, vol. 1, pp. 53-66,
1997.

[34] M. Dorigo and T. Stützle, Ant colony optimization.
Cambridge, Massachusetts: MIT Press, 2004.

[35] M. Dorigo, M. Birattari, and T. Stützle, "Ant colony
optimization - Artificial ants as a computational
intelligence technique," Ieee Computational
Intelligence Magazine, vol. 1, pp. 28-39, 2006.

[36] M. Dorigo, V. Maniezzo, and A. Colorni, "Positive
feedback as a search strategy," Dipartimento di
Elettronica, Politecnico di Milano, Italy, Technical
Report 91-016, 1991.

[37] T. Stützle and M. Dorigo, "ACO algorithms for the
traveling salesman problem," Evolutionary
Algorithms in Engineering and Computer Science,
pp. 163-183, 1999.

[38] A. Chainual, T. Lutuksin, and P. Pongcharoen,
"Forward and backward ant walking strategies for
production scheduling with multiple products," in
Proceedings of the 12th Annual Symposium on
Computational Science and Engineering, Ubon
Ratchathani, 2008.

[39] N. Leechai, T. Iamtan, and P. Pongcharoen,
"Designing machine layout using Rank-based Ant
System and Shuffled Frog Leaping," in Proceedings
of the Annual National Operations Research
Conference, Bangkok, 2009.

[40] J. K. Ousterhout, Tcl and the tk toolkit.
Massachusetts: Addison-Wesley, 1994.

[41] A. Chainual, "Ant colony optimisation for production
scheduling in capital goods industries," M.Eng.
dissertation, department of Industrial Engineering,
Naresuan University, Thailand, 2008.

